Manifolds \& charts

A manifold \mathbf{M} of dimension n is a topological space that near each point resembles n-dimensional Euclidean space \mathbb{R}^{n}. That is, each point of an n-dimensional manifold has a neighbourhood that is homeomorphic to the Euclidean space of dimension n

Let $\mathcal{U} \subseteq \mathbf{M}$, and $\mathcal{V} \subseteq \mathbb{R}^{n}$.
A homeomorphism $\phi: \mathcal{U} \rightarrow \mathcal{V}, \phi(u)=\left(x_{1}(u), \ldots, x_{n}(u)\right)$ is a coordinate system on \mathcal{U}, and coordinates x_{1}, \ldots, x_{n}.
The pair (\mathcal{U}, ϕ) is called a coordinate chart

Equivalence principle: choice of charts is arbitrary

- Space-time is a Lorentzian Manifold
smooth manifold: locally similar enough to Euclidean space to do calculus

Pseudo-Riemannian manifold: equipped with an inner product on tangent space. Family of inner products is called Riemannian metric (tensor). Metric need not to be positive definite

Lorentzian manifold: 4 dimensional, (,,,-+++)
\rightarrow tangent vectors can be classified into time-like, null, space-like

Some basic rules

- In curved space-times we cannot use Cartesian coordinates
- Expressions have to be coordinate invariant
- coordinate transformation for tensors

- $g^{\mu \nu} g_{\nu \sigma}=\delta_{\sigma}^{\mu}$, i.e., $g^{\mu \nu}$ is the inverse of $g_{\mu \nu}$

The metric

$$
\tilde{g}_{\mu^{\prime} \nu^{\prime}}=\frac{\partial x^{\mu}}{\partial \tilde{x}^{\mu^{\prime}}} \frac{\partial x^{\nu}}{\partial \widetilde{x}^{\nu^{\prime}}} g_{\mu \nu}
$$

- In GR the most important tensor is the metric $g_{\mu \nu}$ which is the generalisation of $\eta_{\mu \nu}$
- line element $\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}$
- there exists a single point on the manifold such that
$g_{\mu \nu} \rightarrow \eta_{\mu \nu}$ and even $\frac{\partial}{\partial x^{\kappa}} g_{\mu \nu} \rightarrow 0$ (local inertial frame, LIF)
- $g_{\mu \nu}$ is determined by Einstein's equations
- scalar product $g_{\mu \nu} a^{\mu} b^{\nu}=a_{\nu} b^{\nu} \equiv(a \cdot b)$

Derivatives

- In Euclidean space: - $\mathrm{d} A_{i}$ of vector A_{i} is also a vector space-independent
- $\partial_{k} A_{i}$ form a tensor
- This is generally not the case in curvilinear coordinates:
$\begin{aligned} \text { - covariant vector } & A_{\mu} & =\frac{\partial x^{\prime \nu}}{\partial x^{\mu}} A_{\nu}^{\prime} \\ \text { - its differential } & \mathrm{d} A_{\mu} & =\frac{\partial x^{\prime \prime}}{\partial x^{\mu}} \mathrm{d} A_{\nu}^{\prime}+A_{\nu}^{\prime} \frac{\partial^{2} x^{\prime \nu}}{\partial x^{\mu} \partial x^{\kappa}} \mathrm{d} x^{\kappa}\end{aligned}$
- Must generalise partial derivative to covariant derivative

The covariant derivative ∇_{μ}

- Cannot be "too different" from the partial derivative. Locally free falling coordinate system (LIF): $\nabla_{\mu} \rightarrow \partial_{\mu}$

$$
\nabla_{\mu} V^{\nu}=\partial_{\mu} V^{\nu}+\Gamma_{\mu \lambda}^{\nu} V^{\lambda}
$$

- $\Gamma_{\mu \lambda}^{\nu}$ is the connection coefficient; result of parallel transport Locally free falling coordinate system (LIF): $\Gamma_{\mu \lambda}^{\nu} \rightarrow 0$
- $\xrightarrow{\text { LIF }} \partial_{\mu} g_{\alpha \beta}(P) \equiv \nabla_{\mu} g_{\alpha \beta}=0$

Must also hold in any coordinate system!

$$
\begin{aligned}
& \Gamma_{\mu \nu}^{\alpha}=\frac{1}{2} g^{\alpha \beta}\left(\partial_{\nu} g_{\beta \mu}+\partial_{\mu} g_{\beta \nu}-\partial_{\beta} g_{\mu \nu}\right) \\
& \text { Christoffel symbol } \quad\left(\Gamma_{\mu \lambda}^{\nu}=\Gamma_{\lambda \nu}^{\nu}\right)
\end{aligned}
$$

Covariant derivatives II

- $\Gamma_{\mu \nu}^{\alpha}$ are constructed to be non-tensorial: Instead, $\nabla_{\mu} v^{\alpha}$ transforms as a tensor
- linearity

$$
\nabla(T+S)=\nabla T+\nabla S
$$

- product

$$
\nabla(T \otimes S)=(\nabla T) \otimes S+T \otimes(\nabla S)
$$

- On scalars we simply have $\nabla_{\mu} \Phi=\partial_{\mu} \Phi$
- On vectors

$$
\begin{aligned}
& \nabla_{\mu} v^{\alpha}=\partial_{\mu} v^{\alpha}+\Gamma_{\mu \nu}^{\alpha} v^{\nu} \\
& \nabla_{\mu} v_{\alpha}=\partial_{\mu} v_{\alpha}-\Gamma_{\alpha \mu}^{\nu} v_{\nu}
\end{aligned}
$$

