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Outline of the Course
Special Relativity and flat space-time 

Manifolds 

Curvature & Gravitation 

Schwarzschild solution, black holes 

ADM formalism  

“Weyl" formalism of GR 

Cosmological perturbations: standard, gradient expansion, … 

Eulerian/Lagrangian fluid descriptions in GR
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So far we discussed
• Special Relativity, based on two key assumptions  
 

• necessity to generalise to accelerated frames. Assume  

• Speed of light c is invariant in all reference frames 
• Law of physics are invariant in all inertial frames

• equivalence of inertial & gravitational mass (WEP) 
• In a freely falling reference frame, Special Relativity  

must hold (Einstein’s equivalence principle) 
• Gravitational field is described by the Riemann tensor
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• To do calculus in curvilinear coordinates, we need some 
basic tools:

So far we discussed II

 line element: 

 coordinate trafo for tensors: 

 need the covariant derivative to preserve tensorial character

gµ0⌫0 =
@x

µ

@x

µ0
@x

⌫

@x

⌫0 gµ⌫
~ ~ ~

ds2 = gµ⌫ dx
µdx⌫

rµv
↵ = @µv

↵ + �↵
µ⌫v

⌫

rµv↵ = @µv↵ � �⌫
↵µv⌫

rµg↵� = 0

Christoffel symbol follows from
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Geodesic equation
• Generalisation of Newton’s law with no forces: 

!

!

• in GR: 
 
 
 
 
     is an affine parameter  
 (can’t use time in general since it’s now a coordinate) 

d2xi

dt2
= 0
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More about geodesics
• Geodesic equation can be derived from an action principle 

• test-bodies follow paths that extremize the proper interval  
 
 
 
 
 
 

• Massless bodies move along null geodesics 
Massive bodies move along time-like geodesics
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Riemann tensor
• Curvature is described by the Riemann tensor  
 
 
Indices are lowered and raised with the metric 

• Contains the information about the gravitational field  
(tidal force experienced by a rigid body moving along 
a geodesic) 

• Is fully determined by the metric 

• Only vanishes when space-time is flat
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Interpretation: in curved space a 
vector parallel transported around 
a loop does not point in the original 
direction. The Riemann tensor 
measures this difference
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Riemann tensor II



Riemann tensor II
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Riemann tensor can be derived from the non-commutativity 
of covariant derivatives acting on an arbitrary vector

Technically:

credit: S.M. Carroll
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Riemann tensor III
• Properties:  
 
 
 
 
 

• Symmetries:  256 -> 20 independent components 

• comparison: metric has 10 components

R↵��� = �R�↵�� = �R↵���

R↵��� = R��↵�

R↵��� +R↵��� +R↵��� = 0 First Bianchi identity
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
↵�� = 0 Second Bianchi identity
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Derived quantities
• Ricci tensor: 

• Ricci scalar: 

• Einstein tensor: 

• From the Bianchi identity: 

• Weyl/conformal tensor: (trace-free part of the Riemann tensor)
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10 independent components
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contains information about (free) gravitational radiation

curvature generated by the matter fields that are present at any location



Possibilities to determine 
• Need a tensor equation which constrains the 10 

components of the metric 

• Riemann tensor contains 20 components 

• Option A: Use Einstein / Ricci tensor  
-> Einstein field equations 

• Option B: Use Weyl tensor  
- > Maxwell-like equations

gµ⌫
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