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Outline of the Course

I Special Relativity and flat space-time
M Manitolds

] Curvature & Gravitation

] Schwarzschild solution, black holes
JADM formalism

] “Weyl" formalism of GR

] Cosmological perturbations: standard, gradient expansion, ...

] Eulerian/Lagrangian fluid descriptions in GR d\CG
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SO far we discussed

* Special Relativity, based on two key assumptions

* Speed of light cis invariant in all reference frames

 Law of physics are invariant in all inertial frames

* equivalence of inertial & gravitational mass (WEP)

* |n a freely falling reference frame, Special Relativity
must hold (Einstein’s equivalence principle)

* (Gravitational field is described by the Riemann tensor |
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So far we discussed ||

e [o do calculus in curvilinear coordinates, we need some
basic tools:

+ line element: ds® = g,, datdz”

+ coordinate trafo for t - s, - 0" 0T
coorainate trarto 1or tensors: Ju'v' = aﬁfru, aiﬁ/, 9uv

+ need the covariant derivative to preserve tensorial character

Vo = 90,0% + T ,0"

v |4
\ /\:Od\
Christoffel symbol 1
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Geodesic equation

. . , . 2,
* (Generalisation of Newton's law with no forces: d”z

a2 Y

M
d?z# dz® da”

d)\2 af qx d)\

A IS an affine parameter
(can’t use time in general since it's now a coordinate)
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More apbout geodesics

* (Geodesic equation can be derived from an action principle

e test-bodies follow paths that extremize the proper interval ds

AR / ds = / \/9“” dx; (?;
7 (Aina)
A/\_/ B
2 (Ainit) 3

it
4

 Massless bodies move along null geodesics (ds* = 0)
Massive bodies move along time-like geodesics  (ds* < 0)
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Rliemann tensor

Curvature is described by the Riemann tensor

0 0
RV, 5 = 0gTh, — 0.0 + THTS —THT

87

Indices are lowered and raised with the metric

Contains the information about the gravitational field
(tidal force experienced by a rigid body moving along

a geodesic)
s fully determined by the metric

Only vanishes when space-time is flat
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Riemann tensor ||

direction. The Riemann tensor
measures this difference

——— ——
SR
Interpretation: in curved space a v .
vector parallel transported around / (‘ | \
a loop does not point in the original Q "
— '
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Riemann tensor | Ry

Technically: v

Riemann tensor can be derived from the non-commutativity
of covariant derivatives acting on an arbitrary vector

v,,V,vf = V,V, VP -V, V, VP
= 0,(V,VP) =T, V,VP+ 1% V, V7 — (o v)

7

= 0,0,VP 4+ (0.I%,)V° + 14,0,V —T;,0\V? — I}, T8, V?

Vo

+I% 8,V + % 19V — (b o v)

Lo VA

(0.5, — 8,10, + 5\, — 0,1, )V = 27, VAV? .
W_J

Vo |

W_J
— Rpa;u/
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Riemann tensor ||

* Properties: Ropys = —Rpays = —Rapsy

Ra575 — Rfyéozﬁ

Rag~rs + Raspy + Ravysg = 0 First Bianchi identity

VsR" 5, + VAR (55 + VR™ 5= Second Bianchi identity

 Symmetries: 256 -> 20 independent components

e comparison: metric has 10 components 1

CG
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Derived quantities

curvature generated by the matter fields that are present at any location

/

. _ A
Riccl tensor: R, = R” )5,
Riccl scalar: R=g""R,,

SN | 1
Einstein tensor: G =R, — §gWR

From the Bianchi identity: VPG, =0

Weyl/conformal tensor: (trace-free part of the Riemann tensor)

1 1
Capys = Rapys + 5 (Ras9sy + Rav9as — Ravgss — Rasga~) + ER (9av985 — Gas98+)

\ contains information about (free) gravitational radiation

10 independent components d\C G
»Portsmouth
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Possibilities to aetermine g,,.

 Need a tensor equation which constrains the 10
components of the metric

 Riemann tensor contains 20 components

* Option A: Use Einstein / Ricci tensor
-> Einstein field equations

* Option B: Use Weyl tensor
- > Maxwell-like equations
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