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-leld equations | .

set now c=1

e | HS: curvature of space-time;
RHS: energy-momentum of matter fields

 flat space: 0"T,, =0 curved space: V*T,, =0
only local conservation in GR (Noether: time, translation)

* For a perfect fluid: T, =(p+p)UU, + D9,

AV BN

fluid density 4-velocity pressure

gu,u, = -1
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Newtonian [Imit? z.-«.-jre.

e factor xIs the result of matching the Newtonian limit

goo = —1+ hg

g® = —1— hg, EE— T = g"Too = —Too

1
Royg =+ = —§V2h00

e Zeroth component of field equations is then

1
Roo = EKTOO —

d\CG comparison with Poisson equation  V*® = 47Gp
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Cosmological example:
Friedmann eqguations

. 1
Start with R, — §Rg,w + Ag, = 87GT),
f

cosmological constant

in the fluid’s rest frame: T# — diag(—p,p,p,p)

o Castrate metric to ds®> = —de® + a*(¢)

S

we want to solve for
the cosmological factor

00 component =——p- (2

)

00 + trace

a

N ¢

a

dr?

[1 — kr?

!

+ r? (d6” + sin” 6dg¢?)

global 3-curvature: -1,0,1
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General structure of
GR equations

COMPLICATED!
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General structure of GR

* highly non-linear coupled set of differential equations
* even vacuum solution is tricky R, =0

* In general, exact solutions are only known for very
specific metrics (e.g., FLRW, Schwarzschild, Kerr)

e GGravitational field couples to itself, e.Q.
GR

Electromagnetism > S
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Some properties of
the tield equations

Was first derived from the variation of the (Einstein-)
Hilbert action

1 oS 1
s= [dvan — S nln

1 45y
v —gogH

vV¢T,, =0= V"G, =—p reduces the number of

iIndependent components 10 10-4 =6 w_ arbitrary choice
of coordinates

include matter 7, = and/or 2A , ...

Cauchy problem, use e.g. ADM formulation of GR
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Schwarzschild solution

describes spherically symmetric vacuum space-times
(e.9., black holes, particle orbits in Schwarzschild geometry)

fully non-linear solutionto R,, =0

Schwarzschild solution is the unique spherically symmetric
solution (Birkhoftt’s theorem)

PR (1 QGM) a4 + (1 - 2GM

r

T

-1
) dr? + r2dQ2

True singularity r=0 and a coordinate singularity r =2GM

becomes Minkowski for

M — (QoOr
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Real or coordinate singularities”

o Sufficient condition for a real singularity at point P:
When one or more of the scalars of R,3~s blows up at P

* Coordinate singularities: study Schwarzschild metric and find
more convenient coordinates. E.g., tortoise coordinates:

2GM

T

"= +2GMIn (5o —1) —p ds? = (1 - ) (—df2 + dr*?) + r2dQ?

r* — —oo (r = 2GM)

asymptotic flat (large r) d\CG
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some coordinates for black holes

 tortoise coordinates:

. r 2GM
T :r+2GMln(2G1w—1) — (5% = (1_

T

) (—dt? + dr*Q) + r2d02

e Study radial null-geodesics: Eddington-Finkelstein
ingoing v =t+4+71", outgoing u=t—1" —p ds*=---

* Coordinate system with proper time ¢ and proper distance r
as measured from a free-falling observer (Kruskal frame)

v=t+7, u=1t—-7

v
v—4GMln4GM, u-—4GM1n(—

2GM r(v, u L
u ) > ds” = r(@,a) T (1 - 2(GM)> dvdu
AGM ’
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