Gravitation

Field equations
 $$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$
 set now $\mathrm{c}=1$

- LHS: curvature of space-time;

RHS: energy-momentum of matter fields

- flat space: $\partial^{\mu} T_{\mu \nu}=0$ curved space: $\nabla^{\mu} T_{\mu \nu}=0$ only local conservation in GR (Noether: time, translation)
- For a perfect fluid:

Newtonian limit? $R_{\mu \nu}=\kappa\left(T_{\mu \nu}-\frac{1}{2} T g_{\mu \nu}\right)$

- factor κ is the result of matching the Newtonian limit

$$
\begin{aligned}
& \begin{array}{l}
g_{00}=-1+h_{00} \\
g^{00}=-1-h_{00}
\end{array} \longrightarrow \quad T=g^{00} T_{00}=-T_{00} \\
& \\
& R_{00}=\cdots=-\frac{1}{2} \nabla^{2} h_{00}
\end{aligned}
$$

- Zeroth component of field equations is then

$$
R_{00}=\frac{1}{2} \kappa T_{00}
$$

$$
\begin{gathered}
\nabla^{2} h_{00}=-\kappa T_{00} \\
\downarrow \downarrow \downarrow
\end{gathered}
$$

$$
\text { comparison with Poisson equation } \quad \nabla^{2} \Phi=4 \pi G \rho
$$

Cosmological example:

Friedmann equations

- Start with $R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=8 \pi G T_{\mu \nu}$
cosmological constant
in the fluid's rest frame: $T_{\nu}^{\mu}=\operatorname{diag}(-\rho, p, p, p)$
- Castrate metric to $\underset{\text { we want to solve for }}{\text { d } s^{2}=-\mathrm{d} t^{2}+a^{2}(t)}\left[\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]$ the cosmological factor
global 3-curvature: -1,0,1
- 00 component $\longrightarrow\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho+\frac{\Lambda}{3}-\frac{k}{a^{2}}$
- 00 + trace

$$
\searrow \frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}(\rho+3 p)+\frac{\Lambda}{3}
$$

General structure of GR equations

COMPLICATED!

General structure of GR

- highly non-linear coupled set of differential equations
- even vacuum solution is tricky $R_{\mu \nu}=0$
- in general, exact solutions are only known for very specific metrics (e.g., FLRW, Schwarzschild, Kerr)
- Gravitational field couples to itself, e.g.

Some properties of the field equations

- Was first derived from the variation of the (Einstein-) Hilbert action

$$
S=\int \mathrm{d}^{4} x \sqrt{-g} R \quad \longrightarrow \quad \frac{1}{\sqrt{-g}} \frac{\delta S}{\delta g^{\mu \nu}}=R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=0
$$

- include matter $T_{\mu \nu}=-\frac{1}{\sqrt{-g}} \delta S_{M}$ and/or $2 \Lambda, \ldots$
- $\nabla^{\mu} T_{\mu \nu}=0=\nabla^{\mu} G_{\mu \nu} \longrightarrow$ reduces the number of independent components to 10-4 $=6 \mathbf{K}$ arbitrary choice of coordinates
- Cauchy problem, use e.g. ADM formulation of GR

Schwarzschild solution

- describes spherically symmetric vacuum space-times (e.g., black holes, particle orbits in Schwarzschild geometry)
- fully non-linear solution to $R_{\mu \nu}=0$
- Schwarzschild solution is the unique spherically symmetric solution (Birkhoff's theorem)

$$
d s^{2}=-\left(1-\frac{2 G M}{r}\right) \mathrm{d} t^{2}+\left(1-\frac{2 G M}{r}\right)^{-1} \mathrm{~d} r^{2}+r^{2} d \Omega^{2}
$$

- True singularity $\mathrm{r}=0$ and a coordinate singularity $r=2 G M$
- becomes Minkowski for $\quad M \rightarrow 0$ or $\quad r \rightarrow \infty$ (asymptotic flat)

Real or coordinate singularities?

- Sufficient condition for a real singularity at point P : When one or more of the scalars of $R_{\alpha \beta \gamma \delta}$ blows up at P
- Coordinate singularities: study Schwarzschild metric and find more convenient coordinates. E.g., tortoise coordinates:

$$
r^{*}=r+2 G M \ln \left(\frac{r}{2 G M}-1\right) \longrightarrow d s^{2}=\left(1-\frac{2 G M}{r}\right)\left(-\mathrm{d} t^{2}+\mathrm{d} r^{* 2}\right)+r^{2} d \Omega^{2}
$$

$$
r^{*} \rightarrow-\infty(r \rightarrow 2 G M)
$$

asymptotic flat (large r)

some coordinates for black holes

- tortoise coordinates:

$$
r^{*}=r+2 G M \ln \left(\frac{r}{2 G M}-1\right) \longrightarrow d s^{2}=\left(1-\frac{2 G M}{r}\right)\left(-\mathrm{d} t^{2}+\mathrm{d} r^{* 2}\right)+r^{2} d \Omega^{2}
$$

- Study radial null-geodesics: Eddington-Finkelstein ingoing $\quad v=t+r^{*}$, outgoing $u=t-r^{*} \longrightarrow \mathrm{~d} s^{2}=\cdots$
- Coordinate system with proper time \bar{t} and proper distance \bar{r} as measured from a free-falling observer (Kruskal frame)
$\begin{aligned} & \bar{v}=\bar{t}+\bar{r}, \quad \bar{u}=\bar{t}-\bar{r} \\ & v=4 G M \ln \frac{\bar{v}}{4 G M}, u=-4 G M \ln \left(-\frac{\bar{u}}{4 G M}\right)\end{aligned} \longrightarrow \mathrm{ds}^{2}=\frac{2 G M}{r(\bar{v}, \bar{u})} \exp \left(1-\frac{r(\bar{v}, \bar{u})}{2 G M}\right) \mathrm{d} \overline{\mathrm{d}} \mathrm{d} \bar{u}$

