Hawking radiation

different vacua

$$
\hat{a}^{-}|0\rangle_{\text {Kruskal }}=0 \quad \longleftrightarrow \hat{b}^{-}|0\rangle_{\text {Tortoise }}=0
$$

Perform a Bogolyubov transformation of the creation/annihilation operators
e.g.: $\hat{b}^{-}=\alpha \hat{a}^{-}+\beta \hat{a}^{\dagger}$

This is a coordinate transformation of the quantum states
$\longrightarrow T_{\text {Hawking }}=\frac{1}{8 \pi G M}$

ADM formulation of GR

Or: how to obtain a Hamiltonian formulation
Or: how to obtain a Hamiltonian-Jacobi formulation

Hamiltonian formulation of GR

- Consider Einstein-Hilbert action, coupled to CDM and Λ

$$
\mathcal{S}=\int \mathrm{d}^{4} q \frac{\sqrt{-g}}{2}\left[{ }^{(4)} R-2 \Lambda-\rho\left(g^{\mu \nu} \partial_{\mu} \partial_{\nu} \chi+1\right)\right]
$$

$g=\operatorname{det}\left[g_{\mu \nu}\right], \chi$ is the 4 -velocity potential of the CDM 4-velocity $U^{\mu}=-g^{\mu \nu} \partial_{\nu} \chi$.

- have to split space-time to define canonical variables

ADM split
after Richard Arnowitt, Stanley Deser and Charles W. Misner

- Foliate space-time into space-like hyper surfaces Σ_{t}

- metric $\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} q^{\mu} \mathrm{d} q^{\nu}$

$$
g_{00}=-N^{2}+\gamma_{i j} N^{i} N^{j}, \quad g_{0 i}=\gamma_{i j} N^{j}, \quad g_{i j}=\gamma_{i j}
$$

N lapse, N^{i} shift

ADM split II

- From the action we can calculate the canonical momenta

$$
\pi^{i j}=\frac{\delta \mathcal{S}}{\delta \dot{\gamma}_{i j}}=\frac{\sqrt{\gamma}}{2}\left(\gamma^{i j} K-K^{i j}\right), \quad \pi^{\chi}=\frac{\delta \mathcal{S}}{\delta \dot{\chi}}=\rho \sqrt{\gamma} \sqrt{1+\gamma^{i j}\left(\partial_{i} \chi\right)\left(\partial_{j} \chi\right)}
$$

- extrinsic curvature $K_{i j}=\frac{1}{2 N}\left[N_{i ; j}+N_{j ; i}-\dot{\gamma}_{i j}\right], \quad K=\gamma^{i j} K_{i j}$ covariant derivative w.r.t. $\gamma_{i j}$
- Action is now $\mathcal{S}=\int \mathrm{d}^{4} x\left[\phi \chi \frac{\partial \chi}{\partial t}+\pi^{i j} \frac{\partial \gamma_{i j}}{\partial t}-\mathcal{H}^{\prime}\right]$ with the "Hamiltonian density"

$$
\begin{aligned}
& \mathcal{U}=\pi^{\chi} \sqrt{1+\gamma^{i j}\left(\partial_{i} \chi\right)\left(\partial_{j} \chi\right)}+\frac{2}{\sqrt{\gamma}}\left[\pi_{i j} \pi^{i j}-\frac{\pi^{2}}{2}\right]-\frac{\sqrt{\gamma}}{2}\left[{ }^{(3)} R-2 \Lambda\right] \\
& \mathcal{U}_{i}=-2 \pi_{i, k}^{k}+\pi^{\chi} \partial_{i} \chi .
\end{aligned}
$$

ADM split III
 $\mathcal{S}=\int \mathrm{d}^{4} x\left[\phi^{\chi} \frac{\partial \chi}{\partial t}+\pi^{i j} \frac{\partial \gamma_{i j}}{\partial t}-\mathcal{H}^{\prime}\right]$

- Varying this "new" action w.r.t π^{χ} and $\pi^{i j}$ gives two evo eqn.

$$
\begin{aligned}
\left(\frac{\partial \chi}{\partial t}-N^{i} \partial_{i} \chi\right) & =N \sqrt{1+\gamma^{i j}\left(\partial_{i} \chi\right)\left(\partial_{j} \chi\right)} \\
-K_{i j} & =\frac{1}{\sqrt{\gamma}} \pi^{k l}\left(2 \gamma_{i k} \gamma_{j l}-\gamma_{i j} \gamma_{k l}\right)
\end{aligned}
$$

$\mathcal{H}^{\prime} \equiv N \mathcal{U}+N_{i} \mathcal{U}^{i}$ actually vanishes since the lapse and shift appear in the action as Lagrange multipliers. Their variation is

$$
\mathcal{U}=0, \quad \mathcal{U}_{i}=0
$$

- using these constraints, and specify the velocity potential χ to define the time hyper surfaces

$$
\partial \chi / \partial t=1, N=1, N^{i}=0 \text { and } \partial_{i} \chi=0
$$

"gauge choice" of initial data

ADM split IV

- With these restrictions (valid for "dust") the metric is

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+\gamma_{i j}(t, \boldsymbol{q}) \mathrm{d} q^{i} \mathrm{~d} q^{j} .
$$

- Since the Hamiltonian vanishes, we can obtain directly the Hamilton-Jacobi theory of GR

$$
\mathcal{S}=\mathcal{S}\left[\gamma_{i j}\right]
$$

$$
\begin{aligned}
& \frac{\partial \mathcal{S}}{\partial t}+H=0 \\
& H=\int \mathrm{d}^{3} q\left[\frac{2}{\sqrt{\gamma}} \frac{\delta \mathcal{S}}{\delta \gamma_{i j}} \frac{\delta \mathcal{S}}{\delta \gamma_{k l}}\left(\gamma_{i k} \gamma_{j l}-\frac{1}{2} \gamma_{i j} \gamma_{k l}\right)-\frac{\sqrt{\gamma}}{2}(R-2 \Lambda)\right]
\end{aligned}
$$

PhD Core Course

 on General Relativity
Cornelius Rampf

ICG, University of Portsmouth

December 8-10-12 2014

Outline of the Course

■Special Relativity and flat space－time
GManifolds
『Curvature \＆Gravitation
『Schwarzschild solution，black holes
『ADM formalism
口＂Weyl＂formalism of GR
■Cosmological perturbations：standard，gradient expansion，．．．
$\square E u l e r i a n / L a g r a n g i a n ~ f l u i d ~ d e s c r i p t i o n s ~ i n ~ G R ~$

Last lecture we discussed．．．

『Field equations：$\quad R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}$
『ADM split：Foliate space－time into space－like hyper surfaces Σ_{t}

『Hamiltonian，Hamilton－Jacobi theory of GR for Λ CDM

Alternative formulation of GR

- Standard way: Solve $R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}$ for the metric, then Weyl tensor is fully determined!
$C_{\mu \nu \kappa \lambda}=R_{\mu \nu \kappa \lambda}+\frac{1}{2}\left(R_{\mu \lambda} g_{\nu \kappa}+R_{\nu \kappa} g_{\mu \lambda}-R_{\mu \kappa} g_{\nu \lambda}-R_{\nu \lambda} g_{\mu \kappa}\right)+\frac{1}{6} R\left(g_{\mu \kappa} g_{\nu \lambda}-g_{\mu \lambda} g_{\nu \kappa}\right)$
- Alternative formulation: Weyl tensor is the fundamental geometrical quantity. Steps:

1. $\nabla_{\sigma} R_{\mu \nu \kappa \lambda}+\nabla_{\mu} R_{\nu \sigma \kappa \lambda}+\nabla_{\nu} R_{\sigma \mu \kappa \lambda}=0 \quad \mid \cdot g^{\kappa \sigma}$
2. Use) in 1.
3. Then convert the Riccis, $R_{\mu \nu}=8 \pi G\left(T_{\mu \nu}-\frac{1}{2} T g_{\mu \nu}\right) \bigoplus \mathbf{C Q}_{\text {Portsmouth }}$

$1+3$ split

$\epsilon_{\alpha \beta \gamma \delta}=\sqrt{-g} \varepsilon_{\alpha \beta \gamma \delta}$
$g_{\mu \nu \gamma \delta}=g_{\mu \gamma} g_{\nu \delta}-g_{\mu \delta} g_{\nu \gamma}$

- Yields field equations for the Weyl tensor:

$$
\nabla^{\kappa} C_{\mu \nu \kappa \lambda}=8 \pi G\left(\nabla_{[\mu} T_{\nu] \lambda}+\frac{1}{3} g_{\lambda[\mu} \nabla_{\nu]} T_{\kappa}^{\kappa}\right)
$$

- Note that Weyl tensor is fully described by
electric part
magnetic part
$E_{\mu \nu}(u) \equiv u^{\kappa} u^{\lambda} C_{\mu \kappa \nu \lambda}, \quad H_{\mu \nu}(u) \equiv \frac{1}{2} u^{\kappa} u^{\lambda} \epsilon_{\alpha \beta \kappa(\mu} C^{\alpha \beta}{ }_{\nu) \lambda}$
$C_{\mu \nu \kappa \lambda}=\left(g_{\mu \nu \alpha \beta} g_{\kappa \lambda \gamma \delta}-\epsilon_{\mu \nu \alpha \beta} \epsilon_{\kappa \lambda \gamma \delta}\right) u^{\alpha} u^{\gamma} E^{\beta \delta}(u)+\left(\epsilon_{\mu \nu \alpha \beta} g_{\kappa \lambda \gamma \delta}+g_{\mu \nu \alpha \beta} \epsilon_{\kappa \lambda \gamma \delta}\right) u^{\alpha} u^{\gamma} H^{\beta \delta}(u)$

Fully covariant Maxwell-like field equations

Lagrangian trajectory of a fluid element

$$
\begin{aligned}
& \text { cid element } \\
& x^{\mu}=x^{\mu}\left(q^{i}, \tau\right), \quad u^{\mu}=\frac{\partial x^{\mu}\left(q^{i}, \tau\right)}{\partial \tau}
\end{aligned}
$$

