
Eulerian & Lagrangian flows 
in Newtonian cosmology

(in a nutshell)



The Eulerian way

Background evolution à la Friedmann

Newtonian fluid equations

Eulerian Perturbation Theory: � =
X

n

�(n) , u =
X

n

u(n) .
review: astro-ph/0112551

� = (⇢� ⇢̄)/⇢̄

au = U � ȧxpeculiar velocity

density contrast
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The Lagrangian way
x(t, q) = q + F (t, q)

Observer’s /  
Eulerian frame

x(t, q)

F (t, q)
q

Eulerian field coordinate

displacement field 
  (contains all the dynamical info!)

Lagrangian coordinate

F (t, q) =
X

n

F (n)(t, q)

Coordinate trafo:

�(t, q) =

����
@x

@q

����
�1

� 1Lagrangian density

Lagrangian velocity u = DtF
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Lagrangian & Eulerian approaches 
in General Relativity

Or: How to generalise the above to GR?



The Lagrangian frame in GR

First task: Define the corresponding coordinate system  
to be synchronous and comoving  
 

The 4-trajectory of the fluid element is then  
(    are the space-time coordinates associated with  
 a not yet specified coordinate system)  

This is nothing but a coordinate/gauge transformation! 

[Ehlers’61, Matarrese&Terranova’96, 
CR&Rigopoulos’13]

ds2 = �dt2 + �ab dq
adqb , qa label the fluid elements

x

µ = x

µ (t, qa)

x

µ

x

µ(t, q) = q

µ + F

µ(t, q) x

µ =

✓
⌧

x

◆
; qµ =

✓
t

q

◆
; Fµ =

✓
L

F

◆
;

compare with 1+3 split! 86



Eulerian frames in GR

Define any Eulerian frame: The spatial part of       is the 
Lagrangian 3-displacement field, if it carries the  
longitudinal & transverse part of the Lagrangian metric  
 
Decomposition:      
 
 

A specific Eulerian frame is then obtained by fixing the  
temporal gauge condition, i.e., fix   
      

x

µ(t, q) = q

µ + F

µ(t, q)

Fµ

�E(t,x) = �E(t, q + F ) = �L(t, q) + F ·r�L + · · ·

F 0

➡   



Example 1: Poisson gauge

1. Start with a relativistic solution in the Lagrangian frame,  
obtained from e.g., the gradient expansion technique  
or conventional PT (up to second order)  
 
 

2. Perform gauge trafo  
to the Poisson gauge 
 
 
          
        scalars,        transverse vector,        pure tensor 

ds2 = �dt2 + �ab dq
adqb

x

µ(t, q) = q

µ + F

µ(t, q)

ds2 = �(1 + 2A)d⌧2 + 2awid⌧dx
i + a

2([1� 2B]�ij + �ij)dx
idxj

A,B wi �ij

gµ0⌫0 =
@x

µ

@x

µ0
@x

⌫

@x

⌫0 gµ⌫~ ~ ~ 88



Example 1: Poisson gauge
… And the (2nd order) result is:

is   is the Newtonian displacement field + GR corrections    

is   is the Newtonian velocity potential + GR corrections 

We obtain the Eulerian density + GR corrections  

GR Vector perturbation in      induces frame dragging 

GR tensor perturbations are only gravitational waves

x

µ(t, q) = q

µ + F

µ(t, q)

… OK, but what does the above mean & imply?
GR corrections are generally small but become important  
on scales close to the causal horizon  

Most GR corrections result because scalars, vectors and  
tensors do no decouple beyond leading order 

!

F a

F a

F 0



What we have learnt… (?)
• In GR one can obtain a Newtonian limit in  
 
 
 
 
 

• It is possible to trim GR to deliver exactly the 
Newtonian approximation, but not without doing  
serious damage to GR (see Szekeres 1999)

• In a unique Lagrangian frame 

• In an infinite class of Eulerian frames  
 

GR differs from Newton generally leading leading order
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