Theoretical Cosmology

Bridget Falck

ICG Lectures, 2015

Outline

• Lecture 1: Overview and the Expansion

• Lecture 2: The Early Universe

• Lecture 3: Problems with the Standard Model of Cosmology

The Cosmological Principle

- Copernican principle: we do not occupy a special place in the Universe
 - Philosophical principle
- Cosmological principle: Universe is homogeneous and isotropic *on very large scales*
 - Homogeneous = same everywhere
 - Isotropic = same in all directions
 - Can be tested by large-scale surveys
 - Applies on scales > 10s of Mpc (or 100s?)
- We observe isotropy, and assuming isotropy everywhere via the Copernican principle implies homogeneity

Key Features of the Big Bang Model

- 1. Hubble expansion
 - Lecture 1
- 2. Existence of microwave background radiation
 - Lecture 2
- 3. Prediction of primordial nucleosynthesis
 Lecture 2

 $H_0 = 500 \text{ km/s/Mpc } ??$

Implications of Expansion

- Big Bang model: the Universe is expanding now, so it was very small in the past, and had a "beginning"
- Steady State model: matter is continually created as space expands, so the Universe is homogeneous in time as well as space

Either interpretation valid until the discovery of the microwave background radiation, which favored BB

Cosmic Microwave Background (CMB)

Primordial Nucleosynthesis

1 Baryon density $(10^{-31} \text{ g cm}^{-3})$

5

Big Bang Cosmology

- Cosmological principle: the Universe is homogeneous and isotropic
 - (on very large scales)
- The Big Bang: the Universe was very small, hot, and dense in the past
 - Hubble expansion
 - The Cosmic Microwave Background
 - Primordial Nucleosynthesis (or BBN)

The Expanding Universe

Geometry Dynamics Kinematics Thermodynamics

Geometry

MAP990006

- A metric allows us to calculate the spacetime separation between 2 (4-D) points in a given coordinate system
- $\Omega_0 > 1$ $\Omega_0 < 1$ $\Omega_0 = 1$
- 3-dimensional space has three possible geometries:
 - Spherical
 - Hyperbolic
 - Euclidean

Possible geometries of 2-D surfaces

 In flat space, can expand Minkowski metric of special relativity to allow for expansion:

$$ds^{2} = -c^{2}dt^{2} + a^{2}(t)(dx^{2} + dy^{2} + dz^{2})$$

• Allowing for curvature (and in spherical coordinates):

$$ds^{2} = -c^{2}dt^{2} + a^{2}(t)\left[\frac{dr^{2}}{1 - Kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta \, d\phi^{2})\right]$$

where

1

K = 1Spherical"closed" G $K = 0$ Euclidean"flat" G $K = -1$ Hyperbolic"open" G
--

This FLRW metric (Friedmann, Lamaitre, Robertson, and Walker) is the most general metric for a homogeneous and isotropic universe. • Can also write in terms of the conformal time:

$$d au \equiv rac{dt}{a(t)}$$

$$ds^{2} = a^{2}(\tau) \left[-c^{2} d\tau^{2} + \frac{dr^{2}}{1 - Kr^{2}} + r^{2} (d\theta^{2} + \sin^{2} \theta \, d\phi^{2}) \right]$$

- Regions separated by distance > $c\tau$ are not causally connected
- Note that *r* is a co-moving coordinate:

Dynamics

• In GR, the metric of space-time is related to the matter and energy in the Universe.

$$ds^2 = g_{\mu\nu} x^\mu x^\nu$$

The Einstein equation (now c = 1) is a second order differential equation for a(t):

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu} - \Lambda g_{\mu\nu}$$
geometry
stuff
vacuum energy

• Perfect fluids have $T^{\mu}{}_{\nu} = \text{diag}(-\rho, p, p, p)$

 Using FLRW metric, there are two independent Einstein equations (time-time and space-space components), which give the Friedmann equations:

$$\left(\frac{\dot{a}}{a}\right)^2 + \frac{K}{a^2} = \frac{8\pi G}{3}\rho + \frac{\Lambda}{3}$$
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3}$$

• Can derive a third (not independent) describing energymomentum conservation, giving the fluid equation:

$$\dot{\rho} + 3\frac{\dot{a}}{a}(\rho + p) = 0$$

- Now we have 2 (independent) equations and 3 unknowns: a(t), ρ(t), p(t)
- Need "equation of state" relating ρ and ρ
 - Radiation: $p = \rho/3$
 - Matter: p = 0
 - Vacuum energy: $p = -\rho$
 - In general: $p = w\rho$
- Example: Einstein-de Sitter ($K = 0, \Lambda = 0$): $\rho \propto a^{-3(1+w)}, a \propto t^{\frac{2}{3(1+w)}}$
 - Radiation: $w = 1/3 \Rightarrow \rho \propto a^{-4}$ and $a \propto t^{1/2}$
 - Matter: $w = 0 \Rightarrow \rho \propto a^{-3}$ and $a \propto t^{2/3}$

• Note that
$$\vec{v} = \frac{|\vec{r}|}{|\vec{r}|}\vec{r} = \frac{\dot{a}}{a}\vec{r}, v = Hr \rightarrow H = \frac{\dot{a}}{a}$$

• Neglecting Λ , a critical density would make K = 0: $3H^2$

$$\rho_c \equiv \frac{1}{8\pi G}$$

• Defining density parameter $\Omega = \rho/\rho_c$ you can write the Friedman equation as:

$$\Omega = 1 + \frac{K}{a^2 H^2}$$

Thus $\Omega > 1$, $\Omega = 1$, and $\Omega < 1$ are open, flat, and closed.

• Adding back Λ with $\Omega_{\Lambda} = \Lambda/3H^2$, then $\Omega_m + \Omega_{\Lambda} = 1$ in a flat universe.

The relative amounts of dark matter and dark energy determine the global curvature and expansion history of the Universe.

Ωο

Kinematics

• Light propagates along a null line where $ds^2 = 0$. Consider light (or peak of wave) emitted at t_e and $t_e + \Delta t_e$:

$$\int_{t_e}^{t_r} \frac{cdt}{a(t)} = \int_0^{r_0} \frac{dr}{\sqrt{1 - Kr^2}} = \int_{t_e + \Delta t_e}^{t_r + \Delta t_r} \frac{cdt}{a(t)}$$

• Then for
$$\Delta t \ll 1$$
: $\frac{\Delta t_r}{a(t_r)} = \frac{\Delta t_e}{a(t_e)} \Rightarrow \frac{a(t_r)}{a(t_e)} = \frac{\lambda_r}{\lambda_e}$

• Defining for us today: $a(t_r) = 1$ $\Rightarrow \frac{1}{a} = \frac{\lambda_r}{\lambda_e} = 1 + z$

> So the redshift z is the fractional change in wavelength of light due to expansion

• The line-of-sight co-moving distance to light emitted at time *t_e* is

$$d_{c} = \int_{t_{e}}^{t_{0}} \frac{cdt}{a} = \int_{a_{e}}^{1} \frac{cda}{Ha^{2}} = \frac{c}{H_{0}} \int_{0}^{z} \frac{dz'}{E(z')}$$

where $a_0 = 1$ and $H(z) = H_0 E(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda + (1 - \Omega_m - \Omega_\Lambda)(1+z)^2}$

- For nearby objects, $z \ll 1 \rightarrow d_c \approx \frac{cz}{H_0}$ - Move according to Hubble's law, $v = H_0 d$, with v = cz
- The age of the universe is given by $t_0 = \int_0^{t_0} dt = \int_0^1 \frac{da}{\dot{a}} = \frac{1}{H_0} \int_0^\infty \frac{dz}{(1+z)E(z)}$ For example: EdS (K = 0, A = 0) has $E(z) = (1+z)^{3/2}$ $\rightarrow t_0 = 2/(3H_0) \approx 6.7h^{-1}Gyr$

• The luminosity distance is inferred from the inverse square law:

$$F = \frac{L}{4\pi d_L^2}$$

- Two effects as universe expands:
 - Individual photons lose energy $\propto (1 + z)$
 - Photons arrive less frequently $\propto (1 + z)$
- Received flux is thus

$$F = \frac{L}{4\pi d_p^2 (1+z)^2} \Rightarrow d_L = (1+z)d_p$$

 d_p is the transverse co-moving distance or proper motion distance

• For a flat universe, $d_p = d_c = \frac{c}{H_0} \int_0^z \frac{dz'}{E(z')}$

(otherwise it is very complicated – see Hogg, "Distance measures in cosmology", astro-ph/9905116)

- The angular diameter distance comes from the relation between the observed angle and physical size of distant objects: $\Delta d = d_A \Delta \theta$
- The co-moving size of the object is $(1 + z)\Delta d$, so

$$\Delta \theta = \frac{\Delta d}{d_A} = \frac{(1+z)\Delta d}{d_p}$$

$$d_A = (1+z)^{-2} d_L = (1+z)^{-1} d_p$$

• Supernova Cosmology measures $d_L(z)$, BAO and CMB measure $d_A(z)$

Thermodynamics

• For a gas in thermal equilibrium: $(\hbar = c = k_B = 1)$

$$n = \frac{g}{(2\pi)^3} \int f(p) d^3 p$$

$$\rho = \frac{g}{(2\pi)^3} \int f(p) E(p) d^3 p$$

$$p = \frac{g}{(2\pi)^3} \int f(p) \frac{|p|^2}{3E} d^3 p$$

$$f(p) = \frac{1}{\exp\left(\frac{E-\mu}{T}\right) \pm 1}$$

(number density) (energy density)

(pressure)

(distribution function)

μ: chemical potentialg: internal degrees of freedom

+: Fermions

-: Bosons

• Relativistic matter: $T >> m, T >> \mu$

$$\rho = \frac{\pi^2}{30} gT^4 \quad \text{(Boson)}$$
$$\frac{7}{8} \frac{\pi^2}{30} gT^4 \quad \text{(Fermion)}$$
$$p = \frac{1}{3} \rho, \quad n \propto T^3$$

• Non-relativistic matter: m >> T

$$\rho = mn$$

$$n = g\left(\frac{mT}{2\pi}\right)^{\frac{3}{2}} \exp\left(-\frac{m-\mu}{T}\right), p \ll \rho$$

• 2nd law of thermodynamics:

$$dS = \frac{1}{T}(d(\rho V) + pdV)$$

• When expansion timescale is long compared to reactions that maintain thermal equilibrium, gas undergoes adiabatic changes and entropy per co-moving volume $S(T) = s(T)a^3 = const$.

• If
$$\mu = 0$$
, then $\frac{dp}{dT} = \frac{(\rho + p)}{T} = s(T)$ (conservation of energy)

$$\Rightarrow \frac{a^3(\rho+p)}{T} = const. = \frac{a^3}{T} \left(\frac{4}{3}\rho\right)$$

(since $p = \rho/3$ for radiation)

• Stefan-Boltzmann law: $\rho \propto T^4 \rightarrow a^3 T^3 = const. \Rightarrow T \propto a^{-1}$

Temperature decreases as universe expands

Decoupling

- In expanding universe, particle can move at most cH^{-1}
- Interaction rate for some thermal process is $\Gamma[s^{-1}]$

- If interaction does not occur during Hubble time $(\Gamma^{-1} \gg H^{-1})$ the gas is no longer in thermal equilibrium
- Decoupling when $\Gamma < H$

• In thermal bath, a number of massive particles are exponentially suppressed

$$n = g\left(\frac{mT}{2\pi}\right)^{\frac{3}{2}} \exp\left(-\frac{m-\mu}{T}\right)$$

• If they decouple from the thermal bath, the number density is just diluted by expansion

$$n \propto a^{-3} \propto T^3$$

(precise treatment is given by Boltzmann eq.)

Outline

• Lecture 1: Overview and the Expansion

• Lecture 2: The Early Universe

• Lecture 3: Problems with the Standard Model of Cosmology