Galaxy clustering

Florian Beutler

December, 2016

ICG, University of Portsmouth
Outline of the talk

- Status of the OU-LE3 PFs.
- Status of the spectroscopic visibility mask and sample selection PFs.
- Summary of the BOSS-DR12 data release.
 - BOSS dataset
 - BAO constraints
 - RSD constraints
 - Cosmological implications
Correlation function, power spectrum, their covariance matrices, three-point function and bispectrum PFs developed by OU-LE3 WP galaxy clustering.

The correlation function has reached maturity level 1A. On its way to ML1B. The power spectrum will also reach ML1A early next year. Covariance matrices codes will soon follow.

The bispectrum and three-point functions are in an earlier stage. C++ prototype code ready (ML0).

The Bispectrum code has been developed by Jennifer Pollack, Portsmouth and a C++ and Fortran version now exists. Jun Koda is starting a postdoc in Rom next month (with Enzo Branchini) to migrate the Bispectrum code into the Euclid environment.

The three-point function code (developer is Michele Moresco): direct tripled counting code vs. FFT based method by Harvard group).

VMSP: Random catalogue which specifies the Euclid survey in RA, DEC and redshift (stellar density, sky brightness etc).

Currently developed together with the E2E simulation pipeline (pypelid, main developers Ben Granett and Dida Markovic).

Soon to be migrated into a Euclid-compliant code in collaboration with SDC-Romania.

The sample selection PF is meant to (1) apply different cuts (based on the parameters defining the mask) and (2) calculate the completeness and purity of that sample. The reference sample for the completeness calculation is the deep sample (developer of that PF is Lado Samushia). We expect to reach ML1 by mid 2017.
The BOSS galaxy survey

- Third version of the Sloan Digital Sky Survey (SDSS-III).
- Spectroscopic survey optimized for the measurement of Baryon Acoustic Oscillations (BAO).
- The galaxy sample includes 1,100,000 galaxy redshifts in the range $0.2 < z < 0.75$.
- The effective volume is $\sim 6 \text{ Gpc}^3$.
- 1000 fibres/redshifts per pointing
The final data release (DR12) covers about 10,000 deg2.

The survey is divided in a north galactic patch (NGC) and a south galactic patch (SGC).
Beutler et al. (2016)
Alam et al. (2016)
\[D_V(z) = \left[(1 + z)^2 D_A^2(z) \frac{cz}{H(z)} \right]^{1/3} \]
BAO constraints including BOSS

\[D_V(z) = \left[(1 + z)^2 D_\Lambda^2(z) \frac{cz}{H(z)} \right]^{1/3} \]
BAO detection in the BOSS and WiggleZ cross-correlation

$D_V/r_s = 2180^{+110}_{-140} \ Mpc \quad \text{(pre-recon)}$

$D_V/r_s = 2132 \pm 65 \ Mpc \quad \text{(post-recon)}$

Beutler et al. (2015)
Ade et al. (2015)
Next generation BAO (DESI)

Patrick McDonald
2D clustering

Alam et al. (2016)
Our power spectrum model is based on renormalized perturbation theory (Taruya et al. 2011, McDonald & Roy 2009)

\[P_g(k, \mu) = \exp \{-(f k \mu \sigma_v)^2 \} \left[P_{g,\delta\delta}(k) + 2f \mu^2 P_{g,\delta\theta}(k) + f^2 \mu^4 P_{\theta\theta}(k) + b^3_3 A(k, \mu, \beta) + b^4_4 B(k, \mu, \beta) \right], \]

with

\[P_{g,\delta\delta}(k) = b^2_1 P_{\delta\delta}(k) + 2b_2 b_1 P_{b2,\delta}(k) + 2b_{s2} b_1 P_{bs2,\delta}(k) + 2b_{3nl} b_1 \sigma^2_3(k) P^{\text{lin}}_{\mu}(k) + b^2_2 P_{b22}(k) + 2b_2 b_{s2} P_{b2s2}(k) + b^2_{s2} P_{bs22}(k) + N, \]

\[P_{g,\delta\theta}(k) = b_1 P_{\delta\theta}(k) + b_2 P_{b2,\theta}(k) + b_{s2} P_{bs2,\theta}(k) + b^2_{3nl} \sigma^2_3(k) P^{\text{lin}}_{\mu}(k), \]
Power spectrum measurement

Beutler et al. (2016)
Power spectrum measurement

Beutler et al. (2016)
Alam et al. (2016)
Growth of structure constraints

\[f(z) = \frac{\partial \ln D(a)}{\partial \ln a} \]
Growth of structure constraints

\[f(z) = \frac{\partial \ln D(a)}{\partial \ln a} \]

\[f(z) = f(z) \]
Constraining the neutrino mass

Alam et al (2016)

$\Lambda CDM + \sum m_\nu < 0.16 \text{ eV}$

$\Lambda CDM + \sum m_\nu + A_L < 0.23 \text{ eV}$

$\Lambda CDM + \sum m_\nu + A_{f\sigma_8} < 0.15 \text{ eV}$

$\Lambda CDM + \sum m_\nu + A_L + A_{f\sigma_8} < 0.25 \text{ eV}$
In BOSS we were able to measure the BAO scale in two independent redshift bins \((z = 0.38 \text{ and } z = 0.61)\) with an error of 1%, representing the best BAO scale measurements to date.
1. In BOSS we were able to measure the BAO scale in two independent redshift bins ($z = 0.38$ and $z = 0.61$) with an error of 1%, representing the best BAO scale measurements to date.

2. We achieved the best constraint to date on the growth of structure through $f\sigma_8$ with an uncertainty of 11% in two independent redshift bins.
1. In BOSS we were able to measure the BAO scale in two independent redshift bins ($z = 0.38$ and $z = 0.61$) with an error of 1%, representing the best BAO scale measurements to date.

2. We achieved the best constraint to date on the growth of structure through $f\sigma_8$ with an uncertainty of 11% in two independent redshift bins.

3. These measurements lead to a neutrino mass constraint of < 0.16 eV when combining with Planck.