NOTES ON THE COSMIC MICROWAVE BACKGROUND

ROBERT CRITTENDEN

1. INTRODUCTION

The cosmic microwave background (CMB), discovered in 1965 by Penzias and
Wilson, is thought to be relic photon radiation left over from when the universe
was in thermal equilibrium and is one of the most convincing pieces of evidence
that the universe experienced a hot big bang. With a present temperature of 2.73
K, its frequency spectrum is consistent with a black body spectrum to 50 parts in
a million. Such a spectrum is hard to produce unless at one point the photons were
in thermal equilibrium as predicted by the big bang theory.

What makes the CMB such a useful cosmological tool is the fact that, for the
most part, it has not interacted since the universe was very young — only a few
hundred thousand years old. The photons decoupled from the electrons and baryons
when the universe cooled sufficiently to allow the formation of hydrogen, a process
known as ‘recombination.” Recombination occurred at approximately a redshift of
Zrec ~ 1100, at a temperature of Ti... ~ 0.3eV. At this early time, the fluctuations
which would eventually grow into galaxies and the large scale structures we observe
today were much smaller and were to a good approximation evolving linearly. Thus
the CMB provides a snapshot of the early universe when the physics was much easier
to understand than it is presently.

The temperature of the CMB photons on the sky is remarkably uniform. The
largest anisotropy is the dipole produced by our motion with respect to the rest
frame of the background, AT = 3.372 + 0.007mK corresponding with a velocity
of v = AT—?c = 360 km/s. Beyond this, the temperature is uniform to one part
in 100,000. For nearly three decades, searches for temperature anisotropies could
only place upper bounds on the fluctuations. This changed dramatically in 1993
when the COBE DMR instrument discovered temperature fluctuations of order
30uK on scales of 7° and larger. Since then, temperature fluctuations have been
seen at smaller angular scales by instruments based on the ground and mounted
on balloons. This has been capped very dramatically by the recent full sky CMB
maps produced by NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) in
February 2003.

1.1. Quantifying the CMB temperature maps. In order to compare with
theories, it is necessary to quantify the CMB maps. This can be done either by
giving a sky temperature map, or equivalently by a Fourier like expansion into
orthogonal functions. The temperature fluctuations on the sphere can be expanded
in terms of the spherical harmonic functions:

Date: Lent term, 2003.



2 ROBERT CRITTENDEN

5TT(Q) = % aﬁmnm(ﬂ)

Properties of the spherical harmonic functions are given in Appendix A. The or-
thogonality of the spherical harmonic functions leads to the inverse transform,

g = / 5T1En)1fé’;n(n)d9n.

The ¢ value corresponds roughly with the angular size of the temperature fluctua-
tions, Af ~ 7 /L. For each ¢, there are 2¢ + 1 valuesof m = —¢, —(+1,...L.

The simplest statistic we can consider is the two-point correlation function, or
its Fourier analog, the temperature power spectrum. The power spectrum of the
fluctuations is defined as the expectation of the multipole moments: (a¢maj,, ) =
Cy0perOmmy, which follows simply from rotation invariance. The two point correla-
tion function in real space is defined as

where 6 is the angle between n and n’. The variance is given by the correlation at
zero separation, C(0) = & >°,(2¢+ 1)C,.

If the fluctuations are Gaussianly distributed, the power spectrum contains all
the information that the map contains. All higher moments are either zero (for
an odd number) or are simply related to the power spectrum. Studies of the non-
Gaussian properties of the CMB sky often focus on the lowest order moments, such
as the three or four point correlation functions or their Fourier analogs, known
as the bispectrum or trispectrum respectively. However, there are an unlimited
numbers of ways that non-Gaussianity may appear. While most studies so far have
concluded that the observations are consistent with Gaussianity, there could be
other kinds of non-Gaussianity which have not yet been tested.

1
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2. PERTURBATIONS

Throughout we will be assuming that the metric fluctuations are in the linear
regime, and that we can ignore higher order interactions. This simplifies the analysis
considerably, and in particular means that when expanded in Fourier space, the
various modes do not couple to each other. The harmonic functions for the Fourier
series are solutions to the Helmholtz equation. We will focus on flat cosmologies,
where the harmonic functions are simply e’®*. If the universe is not spatially flat,
the harmonic functions become more complex.

2.1. Synchronous gauge. Throughout this discussion, we will be working in syn-
chronous gauge with a (-+++) signature, though occasionally we will discuss trans-
forming into Newtonian gauge to make contact with some other treatments. Syn-
chronous gauge is generally the gauge of choice for CMB codes due to the simplicity
of the time coordinates. However, it is not a fully fixed gauge and there exist resid-
ual degrees of freedom, known as gauge modes, which have to be considered.

The exact form of the metric we will be considering is

ds? = a®(1)(—d7? + (8ij + hij)dx'da?).
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Derivatives with respect to comoving time will be denoted by dots. We will denote
sums (0,1,2,3) with Greek indices and sums (1,2,3) with Latin indices.

In Fourier space, the tensor can be broken up into scalar, vector and tensor pieces
(see handout / appendix B). Most often we will just be considering the scalar piece,
which can be written as

14 31, ,ik-x 1 A 1
hij = W /d ke |:§h5” + </€sz — 55”) h5:| .
Here, h is the trace of h;;, hs is the traceless scalar piece and h_ = h — hg measures
the anisotropic stress.

2.2. Einstein equations. The Einstein equations for the scalar metric degrees of
freedom can be written a number of ways. Here we will use the two equations:

. g. 9 _
h+ ~h+87Ga %: (6pn +30pn) =0

and
2 .
gzkh, — 167Ga? %:(p]v +pn)on =0.

Here the sum is over all the various particle species. Since we are focusing on the
scalar perturbations, the velocities can be written as v = vk.

3. PERFECT FLUIDS

We next need to understand how the fluctuations in the various types of matter
evolve. This will allow us to follow their evolution from when the fluctuations were
produced in the early universe until the present.

3.1. Perfect fluids. In the linear regime, many of the constituent elements in the
universe can be treated as perfect fluids. For a perfect fluid, the pressure is isotropic
and a function of the density alone, and its stress-energy tensor may be written as,

Ty = (p + P)upus + PGy,

where ut = % is the four velocity of the fluid and u*u, = —1. This implies
that

Ty = —(p+9p)

T, = (p+dp)s;

= (P+p)v

Here, the over bar denotes averaged density or pressure, while the dp denotes differ-

ences from the mean values. We can further define the density contrast § = dp/p,

as well as the average equation of state w = p/p and the sound speed c? = 6p/dp.
Conservation of stress-energy implies then that

5+ (1 +w)(ikv + h/2) = 3%(w—c?)s
ikv + (1 = Bw)ikv + ik = k2.

The first equation is the usual continuity equation, while the second is a version of
the Euler equation. It is useful to consider these equations for some special cases:
cold dark matter (p = 0) and relativistic fluids (p = p/3).
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3.1.1. Cold dark matter. Most leading models for structure formation contain some
amount of cold dark matter. The dark matter is needed to form the potential wells
that the baryons fall into when they have decoupled from the photons. This is nec-
essary since the original baryon fluctuations will be damped by diffusion effects (i.e.
Silk damping.) In purely baryonic models, the amplitude of density fluctuations on
small scales tends to be greatly suppressed relative to the CMB anisotropy.

The dark matter evolution is particularly easy to follow in synchronous gauge.
The frame defined by the freely falling dark matter defines the synchronous coor-
dinates, and as a result the dark matter has no velocity in this frame, (v. = 0 ).
Fluctuations in the dark matter density result only from the stretching of space,
be+hj2=0.

The same equations also effectively apply to the baryons after they decouple.
However, they begin with non-zero velocities resulting from their interactions with
the photons. These slowly decay away as the photons fall into the gravitational
wells made by the dark matter. The velocity equation, v + %v = 0, implies that the
velocities decay as a™' .

3.1.2. Relativistic fluids. At early times, well before decoupling, the photons and
baryons were tightly coupled and acted as a single relativistic fluid. This fluid has
a pressure due to the photons (p = p,/3) and a density which is the sum of the
photon and baryon density (p = p, + py). Before matter domination, the baryon
density can be ignored, so we find

0y + &(ikv, +h/2) = 0
ik = ik%v.

There is a competition between the gravitational potential term, which tends to
make the fluctuations collapse, and the pressure term, which would cause the fluc-
tuations to oscillate acoustically. On very large scales, the gravitational term dom-
inates, while on smaller scales the pressure dominates. The scale where they are
roughly equal is known as the Jeans scale, and it gives an idea of the smallest ob-
jects which could have collapsed. For the baryons, this scale drops considerably at
recombination when the pressure due to photons nearly disappears, and the Jeans
mass drops from supercluster scales to globular star cluster scales.

3.2. Superhorizon evolution - growing and gauge modes. In general, if we
consider perturbations in a universe dominated by a isotropic single fluid, we have
four degrees of freedom: h, h, 8, v. We can solve to find four separate solutions, two
gauge and two physical, known as growing and decaying modes (Press & Vishniac,
1980). Outside the horizon, the gauge modes correspond to a constant shift in h,
and one which is proportional to t~!. We can solve for the behavior of the growing
solutions easily outside the horizon if we set the velocities to zero by hand (though
note that this will eliminate the decaying mode solution, but will leave one gauge
mode.)

3.2.1. Radiation domination. Outside the horizon (and ignoring the fluid velocity),
we can combine the metric evolution and the continuity equation to find a single
second order equation for the relativistic fluid density

. a. 32w, a\’
57+557:TGG[)757:4 E 57
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where the last follows from the definition of the Hubble parameter. Given that
the scale factor grows as a o< 7 o< t'/2 in the radiation dominated era, its easy to
show this has the solutions § oc 72, 772 o t, t~1. The first solution is the growing
mode, while the second corresponds to the gauge mode. A more detailed solution
shows that there is also a decaying mode § & 7 outside the horizon. The growing
and decaying modes match onto the two phases of oscillations of the fluid once the
modes enter the horizon.

3.2.2. Matter domination. A similar treatment of the fluctuations in the matter
regime lead to an equation for the CDM density contrast

. . 2
5,4 85, = 4nGa2p,6. = 2 (9> 5o
a 2 \a

With the matter dominated scaling a x 72 o t*/3,we can find the solutions

§ o< 72, 773 o t2/3, t~1. These again correspond to the growing and gauge modes
outside the horizon, while the decaying mode can be shown to be 6, oc 7= oc t~1/3,
Note that the equation above applies even after the perturbations enter the horizon.
However the scaling of the gauge and decaying modes swap behaviours.

This equation also has very important consequences for the matter power spec-
trum. Modes outside the horizon (or those inside after matter domination) grow
as 72, which corresponds to a gravitational potential which is constant in time.
However, the righthand side of the equation is only large when the dark matter
density is dominant. If the perturbations enter during the radiation dominated
regime, their growth slows. This leads to a turnover in the matter power spectrum
(or matter transfer function). The power spectrum ends up with a peak on scales
which entered the horizon at the radiation-matter transition. Thus the matter
power spectrum becomes a very good probe of the matter-radiation ratio in the
universe.

A similar effect happens if the universe becomes dominated by a cosmological
constant which is spatially smooth. Again, the growth of the fluctuations slows,
affecting the power spectrum near the horizon scale. In doing so, it causes the
gravitational potential to decay, which can be observed by the integrated Sachs-
Wolfe effect (see below.)

4. COLLISIONLESS BOLTZMANN EQUATION

We introduce the Boltzmann equation in stages, first considering the case where
there are no collisions and examining its consequences for the photon distribution
function, in particular how it leads to the Sachs-Wolfe equation. In future sections,
we consider the effects of introducing collisions and how they can lead to damp-
ing effects. Finally, we consider the full anisotropic Boltzmann equation and its
implications for CMB polarization.

4.1. The relativistic Boltzmann equation. For many kinds of particles, the
perfect fluid approximation is not sufficient. This is particularly true for relativis-
tic species such as neutrinos and photons after last scattering, which have a large
mean free path length. The Boltzmann equation keeps track of the number of par-
ticles in a particular element of phase space, the number with a particular position
and momentum: dN = f(x,p,7)d*>xd3p. Here, f is the phase space distribution
function. In the context of CMB fluctuations, we want to know the number of
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photons coming from a given direction, which is precisely the present distribution
function.

We begin by considering simple one component particles with some mass . Our
treatment can easily be extended to massless particles by taking the limit as m — 0.
By Louiville’s theorem, if the Lagrangian includes all the relevant physics, then the
distribution function for a given component of phase space is invariant so that
df = 0. Since we are considering a non-trivial metric, it is essential to distinguish
between the canonical momentum, p, which is intrinsic to Louiville’s theorem and
the 'proper’ momentum, p. The proper momentum is defined in a frame which is
locally Minkowski (p; = p’). The canonical momentum is given by p; = mu; is
related to the proper momentum by

. 1 .
pi = a(dij + 5%‘)1)3-

The proper momentum can be written as p; = aqn;, where n is a 3-d unit norm
vector.

We can write the Boltzmann equation then in terms of the position and the new
momentum parameterization, ¢ and 7. Louiville’s theorem implies

df _0f  da'0f  dqOf  dn;Of _

dr 9t ' dr 9zt " drdq ' dr On;
This can be solved perturbatively. At zeroth order, the solution should be homo-
geneous and isotropic. Assuming an initially thermal spectrum, we find that

folq) = gs(em /Mo £ 1)~

Here, gg is the number of degrees of freedom, Ty is the present CMB temperature
and ¢y = (g% + a®m?)'/? is the energy measured by a comoving observer. The sign
depends on whether the particles are fermions or bosons.

We find the first order solution by expanding in orders f = fo(q)+ f1(7, ¢, 0, x)+
... and then solving the Boltzmann equation keeping only terms to first order. It is
straight froward to show that to zeroth order

Py
»0

~ . —

_ qh;
dr— p°  p°  q
p

Since g—é is zeroth order, we can kee g—g to first order, and the geodesic equation

leads to

dg 1.
E = —§qhij’fli’flj.
In the final term of the Boltzmann equation, Cg‘; and g—é are both first order,

so their product can be ignored in the first order equation. Thus the first order
Boltzmann equation becomes (for a given Fourier mode, in which the dependence
on position becomes a dependence on wavenumber)
df1 . 10fo
— +ik-n—f; — - ——
or Qo h 2 0q
This is appropriate for either neutrinos or photons, where we can take the massless
limit and ¢/qo = 1.
Often the Boltzmann equation is expressed in terms of so-called brightness func-
tions, where the g dependence of the distribution function has been integrated out,

qhij’fliﬁj =0.
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and its expressed as the ration of first order fluctuations to the mean density:

_ [d*daafi afo\ " dfo
A(kvluaT) - qudqqfO - _4f1 <qa_q> - 4f1 (T()a—j—b> .

Here, p = k-n = cos . In terms of the brightness function, the Boltzmann equation
is
A + Zk’/,LA = —Qilij’fliﬁj.

The brightness function basically is the ratio of the density of particles moving in
a given direction to the mean density. Since the density is proportional to 7%, the
temperature fluctuation is given by %T = A/4. For a perfect fluid, the pressure
is isotropic in its rest frame. In this case, the brightness function is particularly
simple, A = § + 4puwv.

It is sometimes useful to write the angular dependence of the brightness function
in a Legendre series with the argument yu, that is

Ak, 7, ) =Y (204 1) Ag(k, 7) Pe(pa),
4

where the moments are given by A, = ﬁ [ dQAP;(p). This is useful because the
gradient term in the Boltzmann equation couples only A, modes to the A, and
Ay+1 modes. If early on, only the lowest modes are excited, then the evolution of
the higher modes are excited slowly. For example, in a perfect fluid only the lowest
two moments are non-zero.

4.2. SW equation. It is straightforward to solve for the evolution of the brightness
function. Multiplying the Boltzmann equation by ¢***7 and integrating over time,
one finds

. Tf ; .
A(Tf) = A(Ti)(i_m‘u(q-f_ﬂ) — 2/ dT(i_Zk‘u(Tf_T)hijﬁi’flj.

Consider the case of instantaneously decoupling at the last scattering surface, 7¢c-
Prior to decoupling, the fluid is assumed to be a perfect fluid. The solution at the
present becomes

. ¢ , .
A(7f) = (6 4 dpw) e kr(Tr=Tree) 9 / dre= T =D h i
Trec
This, divided by a factor of four to convert into temperature fluctuations, is known
as the Sachs-Wolfe equation. The physical interpretation of each term is discussed
below.

4.3. Origin of the Primary Anisotropies. Recombination of electrons and pro-
tons to form hydrogen occurs when the photon-baryon fluid reaches a fixed tem-
perature of order a third of an eV. This then occurs at different times in different
regions; occurring first in underdense regions and later in overdensities. However,
as discussed above, we can consider a fixed time, 7,.., immediately after all the
regions recombined as the last scattering surface.

There are three main contributions to the temperature anisotropies coming from
the last scattering surface: the intrinsic density fluctuation, the Doppler effect and
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the redshifting of the photon along the line of sight. In synchronous gauge, these
can be written as

T
6?11 = i&v—i—vr ‘n— %/r hijnmjdﬂ

where the dots are derivatives with respect to co-moving time and n is a unit vector
along the line of sight. This is known as the Sachs-Wolfe equation. (Note that in
the picture where recombination occurs at fixed temperature, there are no density
fluctuations, but this term is replaced by a %“ factor since photons from different
regions can have more or less time to redshift.)

The contribution from redshifting along the photon path can be understood in a
fairly simple way. Consider a small segment of the path that a photon transverses
in time 07. This segment has a length given by 6L = (g;;dz’dz?)'/? = (a?(5;; +
hij)nin;)'/267 ~ a(1+ Shijn;n;)é7. The shift in the photon temperature over this
distance is given by the fractional change of the segment length in the period d7,

6T, _5% 85957{’) 5T — — E + %hijnmj} oT.
The first term corresponds to the usual homogeneous redshifting of photons and
the second, integrated over the whole photon path, gives the term in Sachs-Wolfe
expression.

If we focus on the scalar piece of the metric, there are two degrees of freedom
and the metric fluctuation is parameterized in synchronous gauge as

1 ~ 1
hij = gh&] + (k‘zkj — §5lj)h5

Thus, in Fourier space the path dependent contribution to the temperature fluctu-

ation is
T LS (L b s ) e

4.3.1. Newtonian gauge version. We can now use this expression to transform the
Sachs-Wolfe equation into the Newtonian gauge (hoo = 2¥ and h;; = 2®0;;). The
gauge transformations can be shown to be

U= gk RS+ 20
B gt
§ = Ooyn+ = t(1+w)h?
v = Vsyn—F%hS

where w = p/p = 1/3 is the equation of state for the fluid in question. Using these
relations, the Sachs-Wolfe equation in Newtonian gauge can be shown to be

or 1

. .
T :Z5W—\Il—|—vr-n—|—/7 (P + U)dr.

This is similar to the synchronous gauge expression, except the intrinsic piece is
modified to include the initial gravitational potential. The final term, which is the
contribution along the path of the photon, is known as the integrated Sachs-Wolfe
contribution. Note that in the absence of anisotropic stress, the Einstein equations
imply U = ®.
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4.4. Neutrinos. The neutrinos freestream as soon as they enter the horizon. Their
density can sometimes be modeled by treating them as a viscous fluid. A more
exact treatment requires following the full neutrino phase space density, as with
the photons after decoupling.

5. PHOTON SCATTERING HISTORY

Its useful to quantify how often the CMB photons scatter. Here we will focus
on Thomson scattering from free electrons, but Raleigh scattering from hydrogen
atoms can also be important for some frequencies.

5.1. Optical depth. The fundamental quantity to consider is the probability of
scattering in a time dt, which is given by orn.dt, where op is the Thomson cross
section and n. is the density of free electrons. The integrated probability over
some time interval is known as the optical depth, k = [ dtorn.. (Note, this is also
denoted as 7 in the literature.) This is related to the mean free time for scattering,
which is t. = 1/orne.

Next consider the probability that a photon has traveled freely from some early
time to the present without scattering, Ps(t). The probability at the photon traveled
from a slightly earlier time, ¢t — dt, is given by Ps(t — dt) = Ps(t)(1 — ornedt), where
the second factor is just the probability that the photon traveled the interval dt
without scattering. This implies that Ps(t) = e *(), where the integral for the
optical depth is evaluated from ¢ until the present.

Finally, we can calculate the wvisibility function, g(t), which is the probability
that a photon was last scattered at a time ¢. This is given by g(¢)dt = Ps(t)ornedt,
that is the probability that it did not scatter after time ¢ multiplied by the prob-
ability that it did scatter during the time interval [¢,t + dt]. Thus, one finds that
g(t) = ornee "1 . Generally, around the time of last scattering, the density of free
electrons is very quickly decreasing, while Ps(t) is growing quickly, approaching
unity at late times. Thus the visibility function is peaked at last scattering and is
often approximated by a simple Gaussian. (Normalized, as [ dtg(t) = 1.)

5.2. Recombination. A detailed knowledge of the scattering history requires un-
derstanding precisely how and when the electrons and protons combined to form
hydrogen. This occurred roughly at a redshift of z ~ 1100, when the temperature
of the universe was about a third of an eV. (L.e., somewhat less than the electron
binding energy.)

At early times, when energetic photons were plentiful, its a good approximation
to assume the reaction

etpe— H+~y
was in thermal equilibrium. In this case, the chemical potentials for the various

species balance, so that g = pe + ptp. Combining this with the expression for the
equilibrium density of non-relativistic species, we can derive the Saha equation:

3/2

1-xe 4\/§C(3)n T / BIT
a2 NZ3 Me

Here z. = n./np is the fraction of free electrons, the hydrogen binding energy

B =13.6eV, n = ny/n, and is constrained by big bang nucleosynthesis, and ¢(3) =
1.20206.
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Eventually the density of energetic photons decreases and the ground state of
hydrogen falls out of equilibrium. Any combination into the ground state produces
a photon which excites the next ground state it sees, leading to no net change in
the fraction of free electrons. However, ground state hydrogen can still be produced
via transitions through the higher excited states of hydrogen.

To follow the recombination process in detail, we must keep track of not only the
number of ground state atoms, but also the number of atoms in each excited state.
Such a calculation is now in principle manageable (for a finite number of excited
levels), but it is complex. However, much can be learned from a very accurate
approximation introduced by Peebles, which models the hydrogen atom as having
effectively two states. This is possible because the higher excited states remain in
equilibrium longer than the ground state, and while in equilibrium their occupancy
ratios are a fixed function of the temperature. The excited states, while remaining
in thermal equilibrium, act as a conduit for free electrons to move into the ground
state.

There are two principle routes to producing the ground state electrons. Direct
decay from the 2s to the 1s state produces a Lyman « photon which excites another
atom. However, if the photon produced is redshifted out of the Lyman « resonance
by the cosmic expansion before it hits another ground state atom, then a net ground
state will be produced. Alternatively, if the 2s state decays with two photons rather
than a single photon, neither of the photons will be able to excite another ground
state.

Following even this simple approximation requires evolving a stiff differential
equation. The basic result is that there remains a small fraction of free electrons
that is frozen in at a level of 1073 — 10~%.

Its also worth noting that the temperature of the electrons, while initially coupled
to the photon temperature, eventually begins to drop faster after equilibrium ends
(z < 400). While the photon temperature drops inversely with the scale factor, its
the velocity of the electrons which drops as the inverse scale factor. The electron
temperature is proportional to the energy, or the velocity squared.

See also Peebles (1993) sections 6 & 23. Seager, Sasselov and Scott (1999).

5.3. Re-ionization. We believe the electrons and protons combined to form hy-
drogen at a redshift of z... ~ 1100. However, there is good evidence that this is
no longer the case today. Were there large amounts of neutral hydrogen, it would
be observed in the spectra of high redshift quasars by Lyman « absorption (the
Gunn-Peterson effect.) Studies of quasars show most of the universe was reionized
by z..; > 5, except for clouds of gas dense enough to be self shielded (Lyman «
clouds.) There are tentative observations of the Gunn-Peterson effect in quasars at
z ~ 6, which indicates we may be seeing the tail end of reionization.

Reionization most probably occurred when the first generation of stars formed
and produced a large flux of ionizing radiation (E, > 13.6 €V.) Precisely when this
occurred depends on how much small scale power there is. In typical CDM cosmolo-
gies, reionization is not expected to happen until a redshift of z,..; < 20. However,
it might happen much earlier if the initial perturbations were non-Gaussian or were
isocurvature in nature.

Reionization is important for the CMB because if it happens early enough, the
photons CMB photons can be rescattered, which would erase whatever initial fluc-
tuations previously existed and create new ones. To evaluate whether reionization
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is important, we must look at the optical depth

fo 0.88cor Hof)
K= / ornecdt = #972 [(2 —30) — (2 —-30 — Qzpes) (1 + QZrei)% )
P

trei
which is related to the probability that a photon is rescattered. If x > 1, then it is
quite likely that photons will scatter off of the ionized medium. This will depend
on the baryon density, but if the it is consistent with nucleosynthesis constraints
(% ~ 0.05), reionization would have to occur at a redshift of z,..; ~ 60 in order
to have a significant impact on the CMB. A significant optical depth will suppress
structure on scales smaller than 6 ~ 2°(1000/z,..;)'/? and will also create large scale
polarization.

For typical CDM models where reionization takes place at z..; ~ 10, the optical
depth is of order a few percent. This tends to give a suppression to the small
scale anisotropies. The recent WMAP polarization results imply « = 0.17 4 0.04,
suggesting that reionization might have occurred even earlier, at a redshift of z,..; =
20 + 10.

Finally, another potentially important issue is how quickly reionization takes
place. If it is not instantaneous, but is ‘patchy’, then this can also result in tem-
perature anisotropies being created.

6. COLLISIONAL BOLTZMANN EQUATION

6.1. Isotropic scattering. Now that we understand when scattering is likely to
occur, we can try to introduce it into Boltzmann equation to find a more realistic
evolution of the distribution function. Here we will examine isotropic scattering,
and in the next section move on to realistic Thomson scattering taking into account
possible polarization of the CMB. We will see that the main implication of a more
realistic scattering history is to damp the smaller scale modes.

The effect of scattering is to locally redistribute particles in phase space. In a
given element of momentum space, some particles are scattered out of it, while at
the same time particles with other momenta are scattered into it. Both processes
happen with a rate proportional to the probability of scattering. The Boltzmann
equation becomes

af dk
E = E (fzn - f) 9
where f;;, = = [dQP(Q,Q)f(€) is the number of particles scattered into the
phase space of f, and P(Q, ') represents a possible angular dependent cross section.
The last term represents the scattering out of the phase space of f.
In terms of the photon brightness function, we find the Boltzmann equation is

A+ ikpA + 2hingig = ornea (8, + dpvy — A)

Here the form of the incoming radiation assumes that scattering is isotropic in the
rest frame of the scatterer. At early times, ornea is large and scattering fixes the
photon and baryon velocities to be the same. Nearer to decoupling, we can solve this
by expanding in powers of the mean free scattering time. Once the mean scattering
time grows to be very large, we can use the collisionless Boltzmann equation.
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6.2. Silk Damping. Just prior to recombination, the photons and baryons are
not perfectly coupled. In fact, the photons generally can travel some distance
between scatterings from electrons. Very roughly, their mean free path length is
Ae = (ornmpxe)™ 1, where z. is the fraction of free electrons and n; is the baryon
density. This mean free path has two implications for the CMB anisotropies.

First, this allows the photons to diffuse out of the potential wells they had
been trapped in, causing the perturbations to become exponentially damped at
small scales. At recombination, each photon has had a number of interactions,
given by N ~ ¢7ec/Ac. The photon diffusion length is thus approximately Ap ~
VN = \/cTreehe. This leads to a damping of the shorter wavelength power given
by T(k) ~ e~*"/¥b_ This is known as diffusion damping, or Silk damping.

A more exact result follows from expanding the collisional Boltzmann equation
to second order and solving for how the density evolves in time. (See Efstathiou
(1990) or Peebles (1980) for more details.)

6.3. Thickness of the last scattering surface. The second effect of the non-
negligible photon mean free path is that the recombination is not instantaneous, and
the light we see originated from a range of redshifts (Az ~ 80.) This will also smear
the small scale microwave anisotropies. If we assume the time of last scattering was
Gaussianly distributed, with a standard deviation given by o7;.., then the small
scale anisotropies will be suppressed by T'(k) ~ ek 07 Treec?/2, Typically, the width
is 0 ~ 0.03.

7. POLARIZATION

7.1. Origin of CMB polarization. Polarization arises from Thomson scattering
off of electrons in the presence of a quadrupole anisotropy in the incident radiation.
The radiation that arises is linearly polarized, not circular, and is typically 5-10%
of the level of the anisotropies, though its precise level depends on the thickness of
the last scattering surface.

The incident quadrupole anisotropy is generally due to the gradient of the photon
velocity. The power spectrum of polarization fluctuations also reflects the oscilla-
tions of the photon-baryon fluid. However, peaks in the polarization occur when
the velocity was maximum, and are thus out of phase with the Doppler peak struc-
ture in the anisotropy spectrum. There is generally no power on modes that were
outside the horizon at last scattering, though large scale polarization can result if
reionization occurred sufficiently early.

Polarization can provide independent confirmation of the anisotropy measure-
ments and also offer a way for breaking parameter degeneracies that occur with the
anisotropies alone. In particular, it is quite useful for constraining the reionization
history of the universe and for detecting the presence of tensor fluctuations.

In some ways, measuring the polarization is simpler than measuring the temper-
ature anisotropies themselves, at least from the ground. This is because measure-
ments can be made by finding the difference in two polarizations at a fixed point
in the sky. By switching quickly between two polarizers, any contribution from
atmospheric effects can be canceled off precisely.

A number of new experiments are now trying to search for CMB polarization
and two have detected evidence for it. The DASI interferometer at the South
pole detected polarization directly at sub-degree scales. In addition, WMAP has
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detected the temperature-polarization cross correlation, primarily on large scales
and used it to constrain the scattering optical depth.

7.2. Stokes parameters. Let us now consider the physics of polarization in more
detail. Consider radiation of frequency w traveling in the Z direction. Its electric
field can be written as

E, = agcos(wt—¥0;)

E, = aycos(wt—0y).
We can parameterize the degree of polarization in terms of four Stokes parameters:

I = ag) + (ag)
Q = <aﬂc> - <ay>
U = (2azaycos(f, —0,))
V = (2azaysin(0, —0,))

Here, the averages are over times long compared to the period of the wave. I mea-
sures the total intensity, while () and U parameterize the magnitude and direction
of the linear polarization. V measures the level of circular polarization, which is
not usually excited in the CMB context.

If we consider rotating the coordinate basis by some angle ¢, the measures of
linear polarization transform as

Q' = Qcos2¢+ Usin2¢p

U' = Ucos2¢— @Qsin2¢.
Rotating by 45° takes Q — U and U — —(@Q, while a rotation of 180° returns to
the same values. This is because the polarization is represented by its amplitude
and its plane rather than by an ordinary vector. For this reason, polarization is a
spin-2 field and it is often represented by a 2 x 2 symmetric traceless matrix:

ﬁ:<§ _UQ>.

7.3. The polarized Boltzmann equation. To follow the creation and evolution
of polarization fluctuations, we must modify the Boltzmann equations to follow the
polarization degrees of freedom and also include the anisotropic nature of Thomson
scattering. Thomson scattering has the differential cross section given by,

do _ 3or

aQ 8z
where € and €' are the polarization vectors of the incoming and outgoing radiation,
respectively. Even if the incoming radiation is unpolarized, radiation scattered at
90° will be leave completely polarized.

This is included in the Boltzmann equation by treating the distribution function
as a vector, with each element representing a different Stokes parameter. For the
case of scalar fluctuations, no U modes are generated and the distribution functions
can be represented by two brightness functions, Ar and Ap. The anisotropy of
Thomson scattering couples these equations, with the polarization being sourced
by the quadrupole of temperature distribution, A7s. The polarization feeds back
into the evolution of the temperature fluctuations, damping them at smaller scales
compared to the isotropic scattering results.

In the tightly coupled limit, the photon-electron fluid acts as an ideal fluid
described by its density and velocity alone. The polarization and temperature

2
|6/ '€*| )
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quadrupole are zero. As the time of last scattering approaches, we can solve for
the polarization by expanding in powers of the conformal mean scattering time,
T.. To first order, we find Apqe, Ap x ikpvr,; that is, we find the quadrupole mo-
ment and the induced polarization are proportional to the gradient of the velocity
times the mean free scattering time. If we integrate this through the last scattering
surface, we find Aro, Ap o ikpv ATy, where the width of the visibility function
has replaced the mean scattering time. This assumes the velocity is fairly constant
over the surface of last scattering; for small scales this is not the case and the
polarization becomes suppressed by the thickness of the last scattering surface.

Thus the polarization traces the velocity field on the surface of last scattering.
If the velocities are inwardly converging into a point, then it will be surrounded by
a radial polarization pattern. If instead the velocities are diverging, there will be
a tangential polarization pattern. The polarization power spectra will be greatest
on scales where the velocities were biggest on the last scattering surface. Thus the
peaks will be out of phase with the intensity peaks which follow the density of the
fluid (see below.)

7.4. Correlation functions. In general, we can look for correlations between any
of the Stokes parameters: I, Q or U. However, certain correlations must be zero if
the universe respects parity invariance. Under a reflection about the y—axis, the
total intensity and ) polarization of a point remains unchanged, but U — —U. Two
point correlations between things of opposite parity, such as (TU) or (QU) must
be zero if the universe is parity invariant. Note also that (T'Q) must approach zero
at small separations where the polarization coordinate basis becomes undefined.

In addition to temperature and polarization auto-correlations, one can also
search for correlations of the polarization with the temperature anisotropy. These
can be positive or negative and oscillate with the frequency of the photon fluid,
but are out of phase with either the temperature or the polarization correlation
functions. In real space, these will look like net radial or tangential polarization
patterns around hot or cold spots in the temperature distribution.

Observation strategies for detecting (QQ) and (QT) differ significantly. The
former require noise levels to be of order the size of the polarization signal, so
observations must focus on a fairly small section of the sky to reduce the noise.
The cross correlation can be detected with a larger noise level, as long as the
temperature fluctuations are measured reliably. The noise in polarization cancels
out when sufficiently large areas of the sky are observed. Polarization may well
be first detected by its cross correlation with temperature - in particular the MAP
satellite will have noise levels too high to detect the polarization auto-correlation,
but it will survey the entire sky and thus will be able to detect the cross correlation
fairly easily.

7.5. Electric and magnetic modes. At any point on the sky, the polarization
has two degrees of freedom, its amplitude and inclination angle. In general, the po-
larization can be decomposed into two kinds of modes: electric (E), curl-free modes
and magnetic (M), gradient-free modes. Locally, E-modes are either tangential or
radial configurations of the polarization pattern, while B-modes have a either a
clockwise or counterclockwise handedness. (Figure?) A pure E-mode configuration
can be transformed into a pure B-mode by rotating each polarization plane by +45°
(and vice versa.)
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The polarization matrix can be expanded in orthogonal functions just like the
temperature,

P Y (afTE +ab,T8).

lm

where the }N/li’B are an orthogonal basis of symmetric, traceless 2 x 2 matrices.
These can get a bit complex when dealing with large scale polarization.

7.6. Cosmological constraints from polarization. Perhaps the most impor-
tant thing to be learned from polarization is the time of last scattering. Polarization
is a causal process and we do not expect correlations in it on scales larger than the
horizon at last scattering. Thus, polarization can be used to infer the time of last
scattering. Polarization correlations on very large scales, like those seen in WMAP |
indicate that the universe was reionized early enough to achieve a significant optical
depth for the photons to rescatter.

In addition, the E-B decomposition of the polarization will be important. Linear
scalar fluctuations create only E modes. However, gravitational waves can create
both E and B modes. Thus a detection of intrinsic B-modes would be good ev-
idence for significant tensor fluctuations. The expected levels of B modes from
gravitational waves, though, are expected to be small, making the observations
quite challenging.

8. INITIAL CONDITIONS

Now we have a complete set of coupled differential equations which we can evolve
from early times, when the modes of interest were far outside the horizon, until the
present. These include the Einstein equations, fluid equations for cold dark matter
and baryons, Boltzmann equations for photons (temperature and polarization) and
neutrinos. Finally we must also consider the evolution of what ever dark energy
component is making up 70% of the matter in the universe, which is particularly
easy in the case of a cosmological constant.

All of these equations must be supplemented by the initial conditions of the
perturbations, which are determined by a model of the early universe. Here we
discuss the various possibilities for initial conditions.

8.1. Active vs. passive. Some models for the origin of structure include sources
which still exist today, whose behaviour must also be followed along side the other
perturbations. Such sources are known as active sources. Other models, such as
inflation, where only the initial conditions are changed early in the universe, are
known as passive sources.

The best known examples of active sources are cosmic defect theories, such as cos-
mic strings and cosmic texture (e.g. Shellard & Vilenkin). The defect evolution is
non-linear and occurring constantly as the defects attempt to unwind themselves as
they enter the horizon. Typically, the defects interact only gravitationally through
their influence on the Einstein equations. Because of their non-linear evolution, the
predictions for defects are considerably harder to determine. At present, though,
they appear to be an unlikely candidate for the primary source of anisotropies.
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8.2. Casual vs. acausal. Cosmic defects are also a very good example of a causal
mechanism for structure formation, because they do not require correlations on
scales larger than the horizon. Inflation naturally produces correlations on super-
horizon scales, which in the standard big bang context would appear to be acausal.

8.3. Adiabatic. The simplest kinds of initial conditions are where the number
densities of all the constituent particles fluctuate identically. These are known

as adiabatic fluctuations and are necessarily curvature fluctuations. For adiabatic

fluctuations, ‘Z:” = dne — 5n’—‘bb and for all the particle species. This implies that

Ne

§c = 6, = 24, since the photons are relativistic and n, o pi/ *. In addition, since
the perturbations were produced in the early universe, it is assumed that only the
growing mode of the perturbations is important today, so that & oc 72.

It is worth describing a bit more about the statistics of the fluctuations. Through-

out we have been considering the evolution of the Fourier transformed amplitudes
defined by

Vv 3 ik-x
d(x) = G /d k "% 0.
The Fourier modes are characterised by an amplitude and a phase. In the linear
regime the amplitudes evolve independently of each other, while the phases re-
main preserved. For Gaussian fields, the phases are random. The linear evolution
preserves any non-Gaussian information which is in the phase correlations.

For Gaussian random fields, all the information is contained in the two point
correlation function, or in Fourier space in the power spectrum, P(k). The ensemble
average of two Fourier modes is given by

v
(2m)

where the Dirac delta function is the consequence of homogeneity. In practice, we
usually assume that the ensemble averages are equivalent to averages over large
enough volumes (i.e. the spatial ergodic theorem.) The real space two point func-
tion can be shown to be the Fourier transform of the power spectrum,

(Odir) = P(k)dp(k — k'),

4 3 ik-x
(B5xY) = o /d KP(k)e™.
The variance, or the correlation function at 0°, is given by (6*) = gy [ k*dkP(k).

8.3.1. Scale independent and invariant spectra. The most widely considered class
of spectra are known as scale independent, and are characterized by a simple power
law P(k) x k™, where n is known as the spectral index.

A special subclass of these is the scale invariant spectrum, which is also known
as the Peebles-Harrison-Zeldovich spectrum. Here, the contribution to the variance
is the same for all modes entering the horizon. Outside the horizon, § o 72,
so P(k) oc 7*k™. From the expression for the variance, the contribution per log
interval is k3P (k) o< 74k3T™ which should be invariant at horizon crossing k7 ~ 1.
This implies that a scale invariant spectrum has n = 1.

Inflation usually predicts a nearly scale invariant spectrum, with n ~ 0.92 — 1.0.
Current observational constraints place the spectral index in the range n = 1 4+0.1.
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8.4. Isocurvature modes. The alternative to adiabatic fluctuations are known
as isocurvature fluctuations, or perhaps more accurately as entropy fluctuations.
These have initial conditions where the ratios of various particle species vary from
place to place. However, they may be initially compensated such that the density
fluctuations cancel. But the modes that begin as isocurvature may not remain so,
particularly after matter domination.

There are as many different kinds of isocurvature fluctuations as there are pairs of
particle species. For example, often the number of photons per dark matter particle
is assumed to vary, but one could also consider variations in the number of photons
per baryon, or baryons per dark matter particle. There are many ways of exciting
isocurvature modes, from multifield inflationary models to axions produced in the
early universe. These modes may also co-exist with adiabatic modes and there may
be correlations between them.

The evolution of the modes is most easily followed by defining an analog to the
Bardeen variable for each particle species. That is, we define

1/1 OpN
= — —h_ _ s
N 3 (2 +pN +pN>

which is the curvature fluctuation on surfaces of constant density in a given particle
species. These can be shown to be conserved outside the horizon for most kinds
of particles by stress-energy conservation. Isocurvature perturbations are usually

quantified by
(5”1‘ 5nj
—— =3(G—G),
=84
which is also conserved outside the horizon. However, the full Bardeen variable,

which is a weighted sum of the individual terms,

(8= (v(pn +pn)/ Y (pn +DN)
N N

Sij =

is not necessarily conserved outside the horizon. (Note that for adiabatic fluctu-
ations, (g = (. = (... and all are conserved outside the horizon.) See Wands,
Malik, Lyth & Liddle (2000) for further discussion.

9. READING THE POWER SPECTRUM

9.1. SW effect - Superhorizon evolution. Let us consider the particular case
of superhorizon modes in the matter dominated regime. Recall that there is a
growing mode solution &,, = Ak"™/?72. The fluid and Einstein’s equations imply,
—26,, = h = hs when the velocities are negligible, so that hg = —24k™/%72 + C.
Next, Poisson’s equation, V2® = 4wGdp, implies the gravitational potential is
constant: ¢ = —3 (%)2 6m /K% = —6AK™/272. (Note this is the same as one finds
by transforming to Newtonian gauge.) On superhorizon scales, the Sachs-Wolfe
expression is dominated by the ﬁ5/2k2 term, so the temperature anisotropy is

effectively

5T - 1
— ~ hg/2k? = —2AK"?72 = 2.
T s/ 3

This expression is easier to understand in the Newtonian gauge. Naively, one
expects the redshifting of photons to be given by the depth of the potential well,
0T /T = ®. However, in the cosmological setting one must also take into account
the expansion. For adiabatic fluctuations, recombination occurs later in potential
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wells because the photon temperature is higher there. Thus, these photons have
had less time to expand. The delay in time is given by the depth of the potential,
dt/t = ®. Since the scale factor grows as t3 in the matter dominated regime, the
fluctuation in scale factor is given by da/a = 2®/3. This shift cancels part of the
naive contribution, leaving 07/T = ®/3.

In terms of the matter fluctuation, the temperature anisotropy can be written

as
6T(m) 2 enr
T _Zk il

Using the expansion of planes waves in spherical harmonic functions, the multipole
moments can be shown to be,

0T (n)_,, 1 .0 . D
Gty = / ( )Yem(n)dQ:&TE W(Sklejz(kﬂyem(k)-
k

T

For a scale invariant spectrum, we can write the power spectrum as Py = |0y |? =
Bkt* /L3, where have factored out the comoving time and wavenumber dependence
and the L? factor assures that B is dimensionless. The CMB anisotropy spectrum

then is
6472

L3

Cr = lagn|* = 5B Y k%57 (k1) Yo (k) Yy (K).

k
Taking the limit as L = oo, the sum over modes becomes an integral, >, =
(L/27)3 [ d®k. The angular part of this integral is trivial by the orthogonality of
the spherical harmonics, which leaves,

8B [ dk 4B
Cr=— | —j2(kt) = ———.
S /k”“) 0+ 1)
This is the reason CMB spectra are usually plotted as ¢(¢ + 1)Cy versus £. More
generally, for a power law density spectrum Py k", one can show

LD
F( )

9.2. Baryon-photon oscillations. On large angular scales, greater than a degree
or two, the fluctuations leading to temperature anisotropies are outside the horizon
at the time of recombination. As described above, their resulting spectrum is fairly
featureless if the underlying initial density spectrum can be described as a power
law. On smaller scales, however, the modes have had time to evolve within the
horizon prior to last scattering. On these scales, the anisotropies are dominated by
the intrinsic anisotropy and to a lesser extent by the Doppler effect. As a result,
the oscillations of the photon-baryon fluid take on a key roll.

Prior to recombination, the photons and baryons are strongly coupled and thus
act as a single fluid. They then share the same velocity v, = v., and their densities
are related by the adiabatic condition that the number of photons per baryon is
fixed, §, = 46/3. This fluid acts as one with pressure %ﬁw but which has density

py +ﬁb7

CZO(

. . 1.
%57 = 8 = —5h —ikv,

a ikp
5

4.
(P + 5P)0y +Dp vy = =
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The speed of sound in this fluid is

2 9P _ 30y 1
b

% 3m+py, 3(1+R)

where R = 3py/4p-.
The velocity equation can be rewritten using in terms of the sound speed as

i 3
v, o+ %(1 —3¢2)v, + Slikd, = 0.

Combining this with the density evolution equation, we find that the density acts
as a forced, damped harmonic oscillator:

.. 2..
by + k20, = —3h

Here for simplicity we have dropped the damping terms, which is appropriate in
the radiation dominated regime (c2 ~ 1/3.) Following decoupling, the photons
freestream and the baryons fall into the potential wells generated by the dark
matter.

9.2.1. The Doppler peaks. Oscillations for a given wavenumber begin when k7cs ~ 1
and their subsequent evolution behaves roughly as § ~ cos(k7cs + ¢0). The phase
offset depends on the initial conditions and on how the perturbations are forced,
but is fairly independent of the wavenumber.

The CMB anisotropies probe the the density fluctuations at a fixed time, 7.
Each mode at this time will be at a different point in its oscillation, depending on
how long that mode has been inside the horizon. Modes just entering the horizon
are beginning their first collapse due to gravitational attraction. Slightly smaller
modes will have had time to collapse to a point where their pressure was sufficient
to force a bounce, and will be expanding back again. Much smaller wavelengths
will have had time for multiple compressions and rarefactions.

The peaks in the CMB spectrum on scales smaller than a degree are associated
with those wavenumbers that have just reached the peak of their compression or
rarefaction at 7.... The term Doppler peaks is a bit of misnomer, since they are
created at minima and maxima of the density fluctuations, where the velocities are
actually zero. The true Doppler effect resulting from the velocities does contribute,
but it is smaller than the intrinsic piece and is 90° out of phase. It has the effect
of filling up the space between the Doppler peaks, making the dips shallower than
they would be otherwise.

Note that there is a further blurring of the peak structure resulting from the
projection of the modes from three dimensions down to two. Each ¢ mode receives
contributions from a range of wavenumbers, depending on the angle at which the
mode intersects the sphere of the sky.

9.3. How the spectrum depends on parameters. The physical evolution of
CMB anisotropies depends sensitively on a number of cosmological parameters. If
one assumes a simple form for the initial perturbations, then measurements of the
CMB anisotropies can be used to constrain the cosmological model.
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9.3.1. Angle-distance relation. The photon-baryon oscillations provide a useful phys-
ical yardstick for the early universe. By knowing when last scattering occurred,
we can infer the total curvature of the universe from the angle-distance relation.
The comoving time of recombination, assuming it happens sufficiently after the

matter-radiation equality, is given by 7. = 2H; 1\ / Q,_nl(arec /ap). In a flat, matter
dominated universe, the comoving distance to the last scattering surface is given by
Tree = To = 2H Lt so the angular scale of the sound horizon at last scattering

is 0 = csTrec/rdec = Cs/ arec/aO ~1°.

If the universe is open, the comoving distance to the last scattering surface is
no longer equal to the comoving time since last scattering, but is given by 7. =
2H; 1(2;11. Then the relevant angular scale is 0 = cs1/Qm(arec/a0). (If the matter
density is sufficiently low that the matter-radiation transition is concurrent with
recombination, then this will shift the coming time of last scattering somewhat. We
have neglected this effect here.)

Finally, for universes with a cosmological constant, ryc. >~ 790 = 2H lQ,_nl/ o (),
where the hyper-geometric function F'(€,,) is a slowly (logarithmically) varying
function of the matter density, ranging from 1 (£, = 1) to 0.8 (€, = 0.1). Thus
the angular scale of the Doppler peaks is fairly independent of the matter density for
flat universes, but it can be increased somewhat for large values of the cosmological
constant.

9.3.2. Matter density. Another important factor in generating the CMB anisotropies
is the present matter density. Lowering the matter density makes the time of
radiation-matter equality later, z¢q = 2.3 X 10%Q,,,h%. This effects both the forcing
term for the photon-baryon oscillations and the contributions from the integrated
Sachs-Wolfe effect. The forcing term is stronger near radiation-matter equality, so
the heights of the Doppler peaks are higher when the matter density is lower.

9.3.3. Baryon density. Finally, the physical baryon density, Q,h?, is also critical to
the evolution of the microwave anisotropies. Recall that the photon-baryon fluid
acts as a fluid with pressure p = p,/3 and density p = pp + p-, so that increasing
the baryon fraction at recombination makes the fluid heavier. This causes the fluid
to compress more and bounce back less, shifting the effective zero point of the oscil-
lations so that dcompression > dexpansion. Thus the (odd) Doppler peaks associated
with the compression will be higher than those associated with the rarefaction (the
even numbered peaks).

Another effect of increasing the baryon density is that the sound speed is lowered,
so that the peak structure can be shifted. However, this effect is fairly small as
c? = R/3(1+ R), where the ratio is typically R = 4p,/3p, ~ 3 —4 at recombination
if nucleosynthesis is correct. Such a high value means that the baryon density needs
to be changed a great deal to effect the speed of sound.

9.4. Damping effects. As discussed above, diffusion effects damp out the smallest
scale modes. In addition, the observed temperature anisotropies are also blurred by
the finite thickness of the last scattering surface. These effects lead to an exponential
suppression of the high ¢ modes, for which kAT, > 1.

9.5. The integrated Sachs-Wolfe effect. The integrated Sachs-Wolfe contribu-
tion arises along the photon path from last scatter to today, when it passes through
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a time varying gravitational potential. Effectively, the photon receives a shift be-
cause the potential it falls into is different from the potential it must climb out
of.

For the growing mode during the matter dominated epoch, the gravitational
potential is actually constant because the growth of perturbations precisely com-
pensates for the decreasing mean energy density, so that ép = pd is constant. Thus,
the ISW effect contribution is most important before the matter-radiation tran-
sition or after matter domination ends (if there is a cosmological constant or a
quintessence field.) The former effect influences the heights of the first few Doppler
peaks, while the latter can create additional fluctuations on very large scales (i.e.
at low ¢.)

The large scale excess power resulting from a cosmological constant is hard to
verify directly due too cosmic variance. However, it may be measured indirectly via
correlations of the CMB with the local matter distribution. That is, matter with
a mean redshift of z ~ 1. Possible probes for this structure include the radio and
x-ray backgrounds.

9.6. Vector and tensor modes. Vector modes and gravitational radiation can
also contribute to the significantly to the CMB anisotropies via the integrated Sachs-
Wolfe effect. In the absence of sources for these modes, vector perturbations decay
away quickly, h¥ oc t~'. These are not expected to be important for inflationary
scenarios, but could prove important if there are active sources for perturbations
such as cosmic defects.

Gravitational waves obey the Einstein equation,

T+ 22 0T 4 k2hE = ~167GOY.
a

In the absence of sources, the solutions to this are given by spherical Bessel func-
tions, i.e. h;f’;» o« j1(k7)/k7 in the matter dominated regime. These tensor modes
are frozen in outside the horizon, but decay away quickly upon entering. Thus, the
temperature anisotropies from gravitational radiation are predominately on scales
that were outside the horizon at decoupling. If the relative contribution of tensor
fluctuations to the anisotropies (7/S = C7 /Cy) is small, then these can be difficult
to detect because of cosmic variance.

9.7. Isocurvature and defect models. Thus far we have been focusing primarily
on adiabatic curvature fluctuations, which are fluctuations in the overall density, but
where the relative numbers of the different particle species are uniform throughout
space (e.g. %z% =, = d..) We can also consider isocurvature, or entropy, pertur-
bations, in which the density of matter on superhorizon scales is uniform, but the
relative densities of particle species fluctuate.

The relation between the temperature anisotropies and the amplitude of large
scale structure is significantly different for isocurvature fluctuations. Recall that on
large scales, adiabatic perturbations predict 67'/T = ®/3. However, for isocurvature
modes the corresponding temperature fluctuation is higher, 67/T ~ 2®. Thus for
a given amplitude of CMB anisotropies, the large scale structure predicted is much
lower in isocurvature theories, and so large bias factors are generally required to
explain the observations.

The phase of the photon-baryon oscillations in isocurvature models is shifted
relative to that in adiabatic models. This is because the oscillations are initially
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not offset outside the horizon, but are started when the modes enter the horizon
due to the isocurvature forcing term. Thus the modes are approximately 90° out
of phase with the adiabatic result.

9.8. Cosmic defect anisotropies. Cosmic defects are effectively isocurvature
perturbations with an active source whose evolution is non-linear. The source
is most important just after the modes enter the horizon and the defects begin
to straighten themselves. The non-linear evolution of this process means that the
source is not coherent, and the defects will source modes in some regions before
others. As a result, the Doppler peak structure of the scalar spectrum can be
smoothed out in defect models.

Probably the most important effect of the active defect sources is that their
vector and tensor anisotropies are typically comparable to the scalar anisotropies
and cannot be neglected. These will greatly increase the large scale power in the
CMB spectrum, but will not affect the small scale structure. Thus, the Doppler
peak structures, if they do exist, will be suppressed relative to the COBE scale
anisotropies.

10. OBSERVING THE CMB FLUCTUATIONS

10.1. Cosmic variance. If the fluctuations are Gaussian, the multipole moments
are all independent. Measurement of the correlation function is fundamentally
limited by the fact that we observe only one sky. The power spectrum Cy is discrete,
and each / value is sampled only 2/ + 1 times. This results in an unresolvable
uncertainty in the spectrum measurement of 6Cy ~ v/2C;/(2¢ + 1)z . This is known
as cosmic variance.

10.2. Higher order effects. Non-linear effects can also produce anisotropies in
the microwave background and these are usually important at smaller scales (< 0.1
degrees.) However, if nonlinear effects lead to the universe being ionized at high
enough redshifts, the entire CMB spectrum can be dramatically altered.

Higher order effects can produce anisotropies at late times, once the pertur-
bations become large. These can come from the CMB photons being rescattered
via Compton scattering, once the electrons are reionized, or when gravitational
non-linearities change the energy or direction of the photons.

10.2.1. The Sunyaev-Zeldovich effect. One notable mechanism which creates tem-
perature fluctuations and affects the CMB spectrum is inverse Compton scattering
of photons off of hot electrons in clusters, known as the Sunyaev-Zeldovich effect.
This effect gives a way to measure directly the baryonic mass in clusters at high red-
shifts. Scattering off of hotter electrons causes a simple energy shift parameterized
by the Compton y—parameter,

) kTe
y — —I/ = /()’f_z"’fLe—2 dl
v meC

e
where op is the Thomson scattering cross section, n. is the free electron density
and the integral is along the photon path through the cluster.
The photons are upscattered, causing the low energy tail of the spectrum to be
shifted to higher frequencies,

on, e

=Y
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T [4 — x coth(x/2)],
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where = = hv/kT,. This results in a temperature deficit at frequencies below the
blackbody peak AT/T = —2y, and a temperature increase at higher frequencies,
with the sign changing at v ~ 220 GHz. Typical clusters have temperatures of
order 10”7 — 103K, and yield Compton-y parameters of order y ~ 10~

10.2.2. The Doppler effect. Another important effect arises if there is significant
bulk motion in the ionized medium, which induces a temperature fluctuation via

the Doppler effect:

AT

T = /’UHTLEO'le
Unlike the S-Z effect, the Doppler shift does not change the spectrum of the
anisotropies and so is harder to distinguish from the primary anisotropies.

This effect is second order in linear theory and can be larger when non-linear
effects are included. The second order effect is usually known as the Ostriker-
Vishniac effect. It can also occur for clusters with proper motions along the line of
sight, where it is known as the kinetic S-Z effect.

10.2.3. The Rees-Sciama effect. The Rees-Sciama effect is related to the integrated
Sachs-Wolfe effect and results from the non-linear evolution of the gravitational
potential in clusters. The integrated S-W effect usually concerns the large scale
linear evolution of the potential, while the Rees-Sciama effect depends on its non-
linear evolution inside a cluster.

10.2.4. Lensing by large scale structure. Clumping matter between us and the last
scattering surface bends the CMB light rays and changes the CMB patterns. While
it cannot generate anisotropies itself, it can transfer power from large angular scales
to shorter ones. It may be an important source of non-Gaussianity in the microwave
background and could be used to probe the large scale matter power spectrum.
Lensing can also induce anisotropies from the motion of clusters transverse to the
line of sight.

10.3. Foregrounds. There are a variety of foreground sources that can contam-
inate our observations of the microwave background. The most important fore-
ground contaminant is our own galaxy, which emits from a number of different
kinds of sources. These foregrounds are so strong that observations are only possi-
ble outside the galactic plane.

What makes observations of the CMB possible at all is that its frequency de-
pendence is generally greatly different than the frequency dependence of the fore-
grounds. Some sources dominate at high frequencies, and others at low frequen-
cies, but there exits a frequency window around 50-100 GHz where the CMB is the
dominant source. The behavior of foregrounds can be studied at higher and lower
frequencies and these observations can be used to help remove their contamination
from the CMB maps.

10.3.1. Thermal dust. One foreground which is most important at high frequencies
is that from thermal emission from dust. The primary source of this dust is in our
own galaxy, where it is typically of order 20K, heated by optical or UV radiation.
The dust is typically carbon or silicate in composition.The frequency spectrum
depends on the size of the dust grains (typically 0.01-0.1 um,) but it scales as a
power law in the microwave frequencies.



24 ROBERT CRITTENDEN

This dust is distributed on the sky more smoothly distributed than we expect
the CMB to be. Thermal emission from high redshift star forming galaxies can also
be important.

10.3.2. Synchrotron emission. Both magnetic fields and energetic electrons are re-
quired in order to generate synchrotron emission. Synchrotron contamination thus
tends to come from the disk of our galaxy where the magnetic fields are highest.
Its tends to dominate at low frequencies, below 30 GHz or so, and has a spectrum
T o \2-420.3

Synchrotron emission can also come from radio galaxies. The contribution from
radio galaxies will have a Poisson distribution on the sky and is an important
foreground source on small angular scales, as it cannot be avoided by simply looking
away from the galactic plane. Unfortunately, the frequency dependence for these
sources changes from source to source, and the sources may also vary in time, so it
is necessary to observe them at the same time as the CMB observations.

10.3.3. Bremsstrahlung radiation. Bremsstrahlung radiation, also known as free-
free radiation, results from electrons scattering off of ionized hydrogen or helium
atoms. Like synchrotron, it primarily originates from the disk of our galaxy, where
the densities of ionized particles are highest. It has a frequency dependence very
close to that of synchrotron radiation, T' o< A>!, and has a similar intensity.

10.3.4. Atmospheric thermal fluctuations. The major problem with observing CMB
anisotropy from the ground is thermal emission from water and oxygen molecules in
the atmosphere. Water vapor is particularly a problem because it varies in time and
space. One way to counter this problem is to make measurements of temperature
differences along two lines of sight, where the atmospheric contributions should
cancel statistically. To reduce the atmospheric contamination, CMB measurements
are generally taken at sites which are as dry and cool as possible, such as at the
South pole or on mountain tops.

10.3.5. Instrumental effects. While each experiment offers its own set of problems,
there are a couple of generic problems in detecting CMB anisotropy. The first issue
is to do with sidelobes, or sensitivity to sources in a direction other than that of
the central beam. The horn system is designed to minimize the system’s response
in the sidelobes, but even so, bright sources (such as the earth or sun) can pass
through them and get confused with the signal.

The other generic issue is amplifier drift. The detector signals must be amplified
by many orders of magnitude and there is unavoidable slowly varying drift in the
amount of amplification (which is usually assumed to have a ‘one over f’ noise
spectrum.) This drift, if not corrected for, can result in ‘striping’ of the inferred
temperature maps which reflects the observing pattern of the instrument.

10.4. Kinds of detectors and platforms.

10.4.1. Detectors. There are three types of detectors in common use today: inter-
ferometers, bolometers and waveguides with HEMT (high electron mobility tran-
sistor) amplifiers. HEMT detectors are generally used at lower frequencies (below
100 GHz) and bolometers, with their broader band powers, are used at higher
frequencies.
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10.4.2. Platforms. The CMB anisotropy may be observed from the earth, from
high altitude balloons or from satellites. There are advantages and disadvantages
to each platform. Ground based observations must contend with contamination
from the atmosphere which leads to much higher noise levels. The advantages of
ground based detectors are that you can integrate for much longer and are able
to fix any problems that arise. In addition, instruments observing at very small
angular scales or with interferometers are too massive to be used anywhere than
from the ground.

Balloon based detectors do not have to deal with the atmospheric foregrounds,
but have much less time to observe and cannot be fixed in flight if a problem arises.
Typically, balloons can observe for only a few hours, though long duration balloon
flights around the south pole have been able to extend this to over a week.

Satellite missions generally have plenty of integration time and have less potential
for systematic errors than ground or balloon based detectors. However, the cost of
satellites can be prohibitive and such missions take many more years of planning
to carry out. As a result, satellites generally cannot use state of the art technology.

10.5. Window functions. Observations do not measure the sky temperature di-
rectly, but measure it convolved with an experimental beam shape,

Tp(x) = / W(x - y)T(y)d.

This convolution is easiest to evolve in Fourier space, where it is simply a product,
ie. Tg(k) = W(k)T(k). In general, the beam shape can be quite complicated,
including being anisotropic and having significant significant sidelobes. It is some-
times a useful approximation to treat the central beam as a Gaussian function, with
W(0) = e=9°/20" /2702, This has a simple Fourier representation, W (k) = e~**7°/2,
The variance angle is related to the full width-half maximum size of the beam by
0% gy = 802 1n2. We have treated the sky as if it were effectively flat, which is
a reasonable approximation at small scales. There, we can make the substitution
kr — (€ + 1)6.

For ground based instruments it is often useful to measure temperature dif-
ferences in order to reduce contamination from atmospheric effects. In the past,
both two and three beam difference experiments were performed. For example, a
two beam experiment measures the variance of the temperature difference of two
patches separated by an throw angle, 0. It is simple to show that

(1~ To)?) =20(0) ~ 20(6r) = 1= 3 (20 + 1)Wi(2 — 2Py(cosbr))Cr.
4

Where W, is the single beam window function. A three beam experiment can be
evaluated similarly.

10.6. Future experiments. A number of balloon based experiments are under-
way. Boomerang and Maxima have already provided important constraints on the
position of the Doppler peaks. More will come from the BEAST and TopHat de-
tectors, as well as from further Boomerang and Maxima flights.

The most important upcoming ground based detectors are interferometers such
as the Very Small Array (VSA) based in Tenerife, DASI based at the south pole,
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and CBI based in the mountains of Chile. These are all underway and all have
reported results.

Two important satellite missions are planned or in progress. NASA’s Microwave
Anisotropy Probe (MAP) was launched in April 2001 and has produced its first
results. The ESA Planck satellite is due to be launched in 2007. These will measure
the whole microwave sky with resolution of approximately 0.15 degrees. Planck will
have greater frequency coverage and should also provide useful measurements of the
polarization.

11. THE CMB FREQUENCY SPECTRUM

The microwave background has a blackbody spectrum with a temperature of
To = 2.728 £ 0.004. The COBE FIRAS instrument verified that the CMB spec-
trum was consistent with a blackbody within 50 parts per million in the millimeter
wavelengths. Deviations from blackbody can be parameterized in many different
ways, the most common being either the Compton y—parameter or in terms of
a chemical potential, p. The motivation for these parameterizations will be ex-
plained shortly. The FIRAS instrument placed upper limits on these parameters
as |y < 1.5 x 107° and p < 9 x 1075,

The form that the spectral distortions are likely to take depend on when and
how they are produced. Possible sources of distortions at very early times are
inconsequential before a redshift of z;, ~ 10° since the universe remains in ther-
mal equilibrium until this time via free-free and radiative Compton scattering, as
these processes can change the number of photons. After this epoch, only ordinary
Compton scattering is important, at least until a redshift z. ~ 10%. Since this pro-
cess conserves photon number, the background remains in kinetic, but not thermal,
equilibrium. While in kinetic equilibrium, injected energy can distort the spectrum.
However, the spectrum has the form of a Bose-Einstein spectrum, parameterized
by a chemical potential, .

The effect of energy injected after z. depends on its production mechanism.
There are a variety of possible sources, including the decay of massive particles
or superconducting cosmic strings, stellar radiation, supernovae explosions, black
hole accretion or evaporation, or by dust. Another important mechanism is inverse
Compton scattering from hotter free electrons, which upscatters photons and redis-
tributes them from lower frequencies to higher ones. This is observed to occur for
clusters where it is known as the Sunyaev-Zeldovich effect, but it also could occur
if the ionized inter-galactic medium is sufficiently hot. This leads to a Compton-y
distortion of the spectrum.

12. STATISTICS AND THE CMB

There are a number of statistical challenges in going from observations of the
CMB to understanding their implications for cosmological parameters. One often
goes through many layers of data compression: from the raw time stream and
pointing data, to maps at many different frequencies, to reconstructing a single
map of the underlying CMB anisotropies, to its binned power spectrum and then
finally to constraints on cosmological parameters. Each step comprises a difficult
statistical problem.

Here T will discuss some of the general tools required to address these problems
and many other problems in observational cosmology.
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12.1. Basic rules of probability. The rules for manipulating probabilities are
quite simple and intuitive. The first, the so called sum rule , requires the sum of
the probabilities for the possible states of a variable be unity. That is,

> P(Xi|) =1,
X

where the sum is over all possible states of X. Here P(X;|I) corresponds to the
probability that X in the state X, given some background information I. This
basically says that the variable must be in one of its possible states.

The second rule is known as the product rule, which states the probability of
two things being true, P(X,Y|I), is given by the probability of the first being
true, P(X|I), times the probability of the second is true given that the first is true,
P(Y|X,I). That is

PX,Y|I) =PX|PYI|X,I)
= P(Y[D)P(X]Y, ),
where the second relation follows from symmetry.
Written in this way, the product rule naturally leads into what is known as Bayes’
Theorem:
P(Y|X,I)P(X|I)
P(Y|I)
Usually this is written so that X represents the parameters of some model and
Y represents some data or observation. P(X|I) is called the prior distribution
for the parameter X, while P(X|Y,I) is known as its posterior distribution. The
probability of the data given some model, P(Y|X,I), is known as its likelihood.
Finally the normalizing factor in the denominator, the probability of data P(Y|I),
is sometimes called the evidence. This is found by marginalizing the numerator
over the p[possible theories,

P(X|Y,I) =

P(Y|I)=>_ P(Y|X;,I)P(X;|I).
X
We often deal with continuous variables, where these probabilities are written in-
stead in terms of a probability distribution function, e.g. the probability that the
variable is in some range can be written as P([X, X + dX]|I) = P(X|I)dX. In this
case, marginalizations like the one above can be written as

P(Y,I) = /dXP(Y|X, NP(X|I).

12.2. Bayesian vs. Frequentist approaches. There are two basic approaches
to interpreting the probability distributions. In the Bayesian approach, probability
distribution functions represent a degree of belief or plausibility. Bayes theorem
then gives a mechanism of learning, or modifying your beliefs based on new data.
The frequentist approach imagines that the observations are random draws from
some ensemble of possible observations. Probability of a observation is then the
long time frequency that it is observed with repeated trials.

Frequentists often criticize the Bayesian interpretation and priors as too vague
and subjective, and they tend to focus primarily on the likelihood. Bayesians
counter that frequentists are using priors implicitly, e.g. a flat prior, and they are
just making their assumptions explicit.
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In effect, Bayesians and frequentists are asking different questions. A Bayesian
asks, ‘how likely is a given parameter value given the data?’, while a frequentist asks,
‘how probable is the data, given certain parameters?’ In certain circumstances,
these approaches give the same results, particularly if the data at hand is very
informative.

12.3. Priors. Since the biggest difference between the approaches is their treat-
ment of priors, it is useful to discuss these here. One’s priors are meant to reflect
all previous information, excluding the data at hand. In physical situations, we
generally have a theoretical expectation or some other weaker data which should
determine the shape of ones priors.

In the absence of such observations and theoretical expectations, one is forced to
make some choice of prior, generally based on the symmetry of the problem. Often
there are some constraints which the probability distribution must obey.

Information theory suggests a way to choose a prior based on the principle of
Maximum Entropy. One chooses a prior which maximizes the entropy of the dis-
tribution, where the entropy is defined as

5= [ ameyos (255).

where m(z) is the measure.
A number of possible distribution functions may be chosen:

P(X) x constant - the flat prior

)
P(X) x 1/X the Jeffries prior
( ) —(X-X)2%/20?

. P(N )= %e # -the Poisson prior for discrete variables

The flat prior is usually used for location parameters, where we have no information
to prefer one value over another. The Jeffries prior is basically uniform in the
logarithm of the parameter and is used for scale parameters, where we have no
information as to the over all scale of the parameter. Both the flat and the Jeffries
priors are improper, as they diverge when integrated over their possible ranges. As
a result, one needs to define upper and lower bounds for these distributions which
requires some physical input.

The Gaussian and Poissonian priors are proper and integrable, but they require
extra input. Either a variance o2 in the case of a Gaussian distribution, or a mean
occupation p = (N) in the Poisson case. The flat prior may be taken as the limit
of a Gaussian, with the variance going to infinity. The Gaussian is also the limit of
a Poissonian as p gets very large.

- the Gaussian prior

12.4. Gaussian distributions. In studying likelihood functions, it is useful to
understand the multivariate Gaussian distribution, since observational errors are
often taken to be Gaussian. In addition, non-Gaussian distributions can often be
approximated near their peaks by a Gaussian approximation.

The most general multivariate Gaussian distribution for a n dimensional data
vector D may be written as

n -~ 1 1 —_ ~ —_—
P(D|X,I) = (27r) "2 |det O] 2 exp —§(D -D)TCc(D - D)
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Here D is the mean value of the vector (D), while C is its covariance matrix, Cij =
((D; — D;)(D; — Dj)). The brackets denote marginalization over the probability
function, i.e. (F(D)) = [d"DF(D)P(D|X,I). In general, either the mean value
of the data or its covariance matrix may be a function of the theory.

Even if the data are Gaussian distributed, the implied parameter distribution
will not be unless the predictions are linear in the theory parameters. However, for
the moment lets assume that the theory parameters are Gaussian distributed:

m ~ 1 1 — —_
P(X|D,I) = (2rr) "% |det T| "2 exp —i(X—X)TT_l(X—X) .

This probability peaks for the parameters X, which is the maximum likelihood
value.

The uncertainty in a parameter depends on whether one considers the other
parameters as fixed or if one chooses to marginalize over them. If we hold the other
parameters fixed, then the variance of a parameter X; is given by o2 = 1/(T1);.
On the other hand, if one decides to marginalize over the other parameters, then
the variance grows due to the covariance between the data points. In the Gaussian
case, this marginalization is performed simply by completing the square, yielding
02 = Ty;. These are related by (T1); = 1/(Tyi — T;5(Tjk) " *Tki), where j, k run
over all indices besides 7. The errors can only increase when the marginalization is
performed.

12.5. Non-Gaussian distributions. In general, the posterior distributions will
likely be non-Gaussian. In this case, it may be difficult both to find the peak of
the likelihood and to marginalize to find individual distributions. These operations
usually must be performed numerically, either directly or by Monte Carlo methods.
One popular Monte Carlo method, called the Markov Chain method, samples the
likelihood surface via a random walk. Depending on the shape of the likelihood
surface, such methods can save considerable computational time compared to direct
integration.

It can still be useful to make a Gaussian approximation to the likelihood surface
by expanding the log of the likelihood in a Taylor series,

1 9?1n L(X)

N LXK -
22 )

In L(X +0X) = In L(X) + Y mgiifx)axi +

Cutting off at the third term leads to a Gaussian approximation. The first term
is effectively —% x? for the model. If we evaluate about the peak of the likelihood,

2
then the linear terms are zero. Finally, —88)‘;‘,7%39 is sometimes called the curvature
i 3J

matrix for the parameters or the Hessian. Flat directions of the curvature matrix
correspond to parameter degeneracies.

Finally, let us define the Fisher matrix which is useful for making predictions for
what a proposed experiment will tell us about the underlying theory. The Fisher
matrix is simply the expectation of the curvature matrix,

Fi(X) == <%>,
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where the expectation denotes an averaging over data consistent with a given model.
Thus, the Fisher matrix is defined for a particular theory and is independent of any
actual data.

The Fisher matrix is useful because it allows us to place a lower bound on
the derived parameter errors resulting from an experiment. In particular, if all
the parameters are fixed but one, then its error is bounded by ¢? > 1/F;;. If we
marginalize over the other parameters, 02 > (F~!);;. These bounds are the same as
what we found earlier for the Gaussian case, where the bound is saturated. However,
it must be realized that the Fisher matrix approach only gives lower bounds. Real
experiments must deal with possible systematic errors, so the resulting error bounds
will rarely achieve the predictions of the Fisher matrix approach.

12.6. Comparing models. While the peak of the likelihood provides a mecha-
nism to choose between different models with the same parameterization, it is not
adequate for choosing between models which have different variables or even dif-
ferent numbers of variables. For this, one usually looks at the ratio of posterior
probabilities. Suppose you have two hypotheses, A and B, each with their own set
of parameters (A4 and Ap) and you wish to discover which is most consistent with
the priors and observations. Consider the ratio

P(A|D,I) P(A|I) P(D|AI)

~ PBID, 1)~ P(BII) * P(D|B, 1)
When R 4p is much larger than one, hypothesis A is favored, while hypothesis B is
preferred if R4p is small. If the ratio is of order 1, then one cannot make a clear
preference. The first term on the right represents the ratio of ones prior beliefs in
the two hypotheses, while the second represents the ratio of the evidences for each
of the hypotheses. Recall that P(D|A, I) is the likelihood of the data, marginalized
over the possible values of the parameters A\ 4.

It is helpful to see this in action on a very simple example. Assume that you
measure some data and find D = D + ¢. You wish to compare two hypotheses: A
which predicts that D = 0, and B which predicts that D = X\, where A\ > A >
Amaz- Hypothesis A has no parameters, so the evidence is simply

P(D|A,I) = (2r) 3o~ te D /20",

while the evidence for hypothesis B requires an integration over possible values of
A

Rap

Amaz _
P(D|B,I) :/ ANP(\|B, I)(2r) 2o te~(A-D)*/20%
Amin
Let us assume that the prior for A is flat over the range, so that P(AB.I) =
(Amaz — Amin) L. Further, if we assume that the observation is well within the
allowed range and that ¢ < A\pnae — Amin, then we can do the integration exactly
to find P(D|B,I) = P(A\ = D|B,I) = (Amaz — Amin) "
Thus we find

_ P(A|I) v Amar - )\mzn % 6752/2([2.

P(BI|I) (2n)20
Again, the first factor is the ratio of the priors, while the exponential factor is
effectively the ratio of the best fit likelihood for Hypothesis A to that for the best
fit model of Hypothesis B (i.e. A = D.) The second factor is sometimes called

Rap
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Occam’s factor, which effectively penalizes Hypothesis B because it has a larger
parameter space. Given two models which fit the data equally well, this factor will
tell us to prefer the simpler model, the one with a smaller parameter space. In this
case, if the initial parameter space for Hypothesis B is small (A 0z — Amin ~ 200),
then Hypothesis A is preferred only if D < 20. However, this cutoff could grow
significantly if the B parameter space were increased exponentially.

REFERENCES

[1] J.M. Bardeen, ‘Cosmological Perturbations From Quantum Fluctuations To Large Scale
Structure,’ lectures given at 2nd Guo Shou-jing Summer School on Particle Physics and
Cosmology, Nanjing, China, Jul 1988.

[2] J. R. Bond, in Cosmology and Large-scale Structure, Proc. 60th Les Houches School, eds. R.
Schaeffer, et al., p. 469, Elsevier (1997).

[3] G. Efstathiou, in Physics of the Early Universe, Proc. 36th Scottish Summer School, eds. J.
Peacock, et al., p. 361, Adam Hilger (1990).

[4] M. Hindmarsh & T. Kibble, Rep. Progress. Phys. 58, 477 (1995).

[5] E. W. Kolb & M.S. Turner, The Early Universe, Addison-Wesley (1990).

[6] A. Liddle & D. Lyth, Cosmological Inflation and Large Scale Structure, Cambridge (2000).

[7] A. Linde, Particle Physics and Inflationary Cosmology, Harwood (1990).

[8] V. Mukhanov, H. Feldman & R. Brandenberger, Phys. Reports 205, 203 (1992).

[9] T. Padmanabhan, Structure Formation in the Universe, Cambridge (1993).

[10] R. B. Partridge, 3K: The Cosmic Microwave Background Radiation, Cambridge (1995).

[11] J. A. Peacock, Cosmological Physics, Cambridge (1999).

[12] P. J. E. Peebles, The Large Scale Structure of the Universe, Princeton (1980).

[13] P. J. E. Peebles, Principles of Physical Cosmology, Princeton (1993).

[14] D.S. Silvia, Data Analysis: A Bayesian Tutorial, Oxford University Press (1996).

[15] A. Vilenkin & E.P.S. Shellard, Cosmic Defects, Cambridge (1994).

APPENDIX A: USEFUL RELATIONS OF SPECIAL FUNCTIONS

Spherical harmonic relations:
e Definition
2041 (1 —m)!
Yim(0,0) = | ————=
im(6:9) ( 4 (I +m)!

e Orthogonality -

/ng(n)Y;m, (n)dQn = 54@/(5mm/

1/2 ‘
> P"(cos §)e™?

e Completeness -

> Yem(m)Yg, (n') = 6(¢ — ¢')5(cos  — cos 0
m

e Plane wave expansion -
T = 4m N il o () Yo (K) Y (F) = D (26 + 1)i jo(kr) Py(cos 0),
Im 14
where jy(z) are the spherical Bessel functions.
Legendre relations (note Pj(x) = P?(x)):
e Legendre equation
2

(1= 2) 5 o) ~ 20 B + (1004 1) = 12| ) =0

dx? d 1— 22
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e Orthogonality
1
2 (I+m)
P (x) P (x)de = ———L i
/,1 @B @)de = o o
e Rodrigues’ formula
" (_1)m m dl+m
(o) = (0 = ) (o - 1)
e Derivative relation
d
(1- xQ)@sz(f) =(l=m+1)P"(z) - (+1)zP"(z)

e Recurrence relation
20+ 1DzP™(x) = (I —m+ )P (2) + (1 +m)P” (z)
Relation to spherical harmonics

21+ 1Pk £) =47 > Vi (k) Y5, ()

Bessel relations (useful for 2-d relations):

Bessel equation

d? 1d m?
@Jm(x) + ;ﬁJm(x) + (1 — §> Im(x) =0
e Orthogonality

1
/ kil (k) (k) = (0~ )
Plane wave expansion

eikp cosd _ Z Zmeimqum(kp)
m

Integral representation

1 27 . . .
Jm(it) A d(bezw cos p—imao

2my™

Derivative relation

d 1
%Jm(m) = 5 [Jm—l(m) - Jm+1(33)]
e Recurrence relation
2m

Imt1(z) = 7Jm($) = Jm-1(2)

Spherical Bessel functions
. T\ 1/2
jn@) = (55) " Ty @)

APPENDIX B: SCALAR-VECTOR-TENSOR DECOMPOSITION



