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1 Lie Groups

De�nition (Symmetry). A symmetry is a transformation of dynamic variables that leaves the form of physical laws
invariant.

De�nition (Lie group). A Lie group is a group manifold with dimension that of the manifold.

Remark. Smoothness reduces understanding to near the identity.

Classifying Lie groups reduces to classifying Lie algebras. Degeneracies in the spectrum of a quantum
system are determined by irreducible representations of the global symmetry.

Examples.

1) O(n) has two disconnected pieces and is length-preserving;

2) SO(n) preserves the sign of the volume element Ω = εi1···inv
i1
1 · · · vinn where {v1, . . . ,vn} is a frame in

Rn.

Examples.

1) M(θ) = cos θI2 − sin θJ2 ∈ SO(2),M(SO(2)) = S1;

2) M(ω) = cos θδij + (1− cos θ)ninj − sin θεijknk ∈ SO(3),M(SO(3)) = B3 ∪ (∂B̄3/Z2) where θ ≡ |ω|,
n ≡ ω̂. �is is compact (closed and bounded), connected but not simply connected.

Examples. Non-compact signature-preserving group

O(p, q) = {M ∈ GL(n,R) : MT ηM = η}

where η =
(
Ip 0
0 −Iq

)
, e.g. M =

(
cosh θ sinh θ
sinh θ cosh θ

)
∈ SO(1, 1).

De�nition (Isomorphism). G ' G′ if there exists a bijective homomorphism.
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2 Lie Algebras

De�nition (Lie algebra). A Lie algebra is a vector space over a �eld with an antisymmetric, bilinear map known as a
Lie bracket that satis�es the Jacobi identity.

Remark. A vector space V with an associative product has a natural Lie algebra. By Jaboci, the structure constants
satisfy fabc f cde + f bdc f

ca
e + fdac f

cb
e = 0.

De�nition (Lie algebra isomorphism). g ' g′ if the underlying isomorphism preserves the Lie bracket.

Remark. Classi�cation of Lie algebras is up to isomorphisms.

De�nition (Ideal). An ideal of g is a subalgebra with strong closure, i.e. [X,Y ] ∈ h∀X ∈ h, Y ∈ g.

Examples.

1) Trivial ideals h = {0}, g;

2) �e derived algebra i(g) := [g, g] ≡ spanF{[X,Y ] : X,Y ∈ g};

3) �e centre z(g) := {X ∈ g : [X,Y ] = 0∀Y ∈ g}.

De�nition (Simplicity). A Lie algebra g is simple if it is non-abelian and possesses no non-trivial ideals.

Remark. For simple g, z(g) = {0}, i(g) = g. For abelian g, z(g) = g, i(g) = {0}.

3 Lie Algebras from Lie Groups

De�nition (Tangent space). �e tangent space TpM toM at p is a D-dimensional vector space spanned by {∂j}Dj=1.
A tangent vector V = vi∂i ∈ TpM acts on functions f :M→ R as V (f) = vi∂if(x)|x=0.

De�nition (Curve). A smooth curve C : R→M is continuous and once-di�erentiable.

�e Lie algebra associated with a Lie group is L(G) = (Te(G), [·, ·]).
Examples.

� L(SO(n)) = L(O(n)) = {real skew-symmetric matrices};

� L(SU(n)) = {traceless skew-Hermitian matrices};

� L(SU(2)) spanned by T a = −iσa/2 and L(SO(3)) spanned by (T̃ a)bc = −εabc both with fabc = εabc.
Remark. Although SO(3) 6' SU(2), L(SO(3)) = L(SU(2)).

De�nition (Translationmaps). �e le� and right translations associated with h ∈ G areLh : g 7→ hg andRh : g 7→ gh.

Remark. �ey are bijective and di�eomorphisms of G.

Lh : g 7→ hg(θ) = g(θ′) is speci�ed by θ′ ≡ θ′(θ) with Jacobian J ij = ∂θ′i

∂θj
. �is induces a linear map ∀ g

L∗h : Tg(G) −→ Thg(G), v = vi
∂

∂θi
7−→ v′ = v′i

∂

∂θ′i
,

where v′i = J ij(θ)v
j .
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De�nition (Le�-invariant vector �eld). �e le�-invariant vector �eld given w ∈ Te(G) is V : g 7→ L∗g(w).

Remark. �is is smooth and non-vanishing.

Claim 1. L∗h(X) = hX ∈ Th(G) ∀h ∈ G,X ∈ L(G). In particular, g−1(t)ġ(t) = L∗g−1(ġ(t)) ∈ L(G).

Remark. Conversely, given X ∈ L(G), we can construct a curve C : R→ G by solving the ODE g−1(t)ġ(t) = X for
all t subject to g(0) = In.

De�nition (Exponential map). Exp(M) :=
∑∞

l=0M
l/l! ∈ Matn(F) provided it converges forM ∈ Matn(F).

Remark. �e exponential map Exp : L(G)→ G is bijective in some neighbourhood of e. With the correct choice of
range I of t, SX,I := {g(t) = Exp(tX) : t ∈ I ⊆ R} is an abelian Lie subgroup of G.

Baker–Campbell–Hausdor� (BCH) formula.

Exp(X)Exp(Y ) = Exp
{
X + Y +

1

2
[X,Y ] +

1

12
([X, [X,Y ]]− [Y, [X,Y ]]) + · · ·

}
.

Remark. Provided convergence in the BCH formula, L(G) completely determines G in some neighbourhood of e. But
globally the exponential map is not bijective: not surjective when G is not connected; not injective when G has a U(1)
subgroup.

Examples.

1) L(O(n)) = {X ∈ Matn(F) : X+XT = 0} so trX = 0. But detExpX = exp trX = 1, Exp(L(O(n))) =
SO(n) 6= O(n);

2) L(U(1)) = {X = ix : x ∈ R}. Since g = ExpX = eix ∈ U(1), ix ∼ ix+ 2iπ.

4 Representation of Lie Algebras

De�nition (Representation). A representation d of a Lie algebra is a linear homomorphism to a set of matrices
preserving the Lie bracket.

Remark. dim d := dimV 6= dimG. Given representation D of a matrix Lie group G and X ∈ L(G),

d(X) =
d

dt

∣∣∣∣
t=0

D(g(t)).

Examples.

1) �e trivial representation d0 with d0(X) = 0 ∈ F of dimension 1;

2) �e fundamental representation df with df (X) = X of dimension D;

3) �e adjoint representation dadj(X) = adX .

De�nition (Adjoint map). Given X ∈ g, its adjoint map is adX : g→ g, Y 7→ [X,Y ].

Remark.
[
dadj(X)

]b
c

= Xaf
ab
c where fabc the structure constants of g.
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De�nition (Equivalence of representations). R1 ' R2 if there exists a non-singular matrix S s.t. ∀X ∈ g, R2(X) =
SR1(X)S−1.

De�nition (Invariant subspace). A representation R with representation space V has an invariant subspace U ⊆ V if
R · U ⊆ U .

Remark. U = {0},V are trivial invariant subspaces.

De�nition (Irreducibility). An irreducible representation (irrep) of a Lie algebra has no non-trivial invariant subspaces.

Representations of L(SU(2))

Roots. In basisH = σ3 =
(

1 0
0 −1

)
, E± = (σ1 ± iσ2)/2 = ( 0 1

0 0 ), ( 0 0
1 0 ), the roots of L(SU(2)) are the eigenvalues

{0,±2} of eigenvectors {H,E±} of adH .

Weights. Given representation R that R(H) is diagonalisable, its eigenvectors span V and its eigenvalues {λ}
are known as the weights of representation R.

Step operators. E± obey R(H)R(E±)vλ = (λ± 2)R(E±)vλ.

Results. For a �nite-dimensional, irreducible representation RΛ of L(SU(2)) labelled by the highest weight
Λ ∈ N,

1) the weight set is SR = {−Λ,−Λ + 2, . . . ,Λ− 2,Λ} ⊂ Z;

2) the weights are non-degenerate with dim(RΛ) = Λ + 1.

Representations from L(SU(2))

SU(2) representations. Obtained from Exp : RΛ(X) 7→ DΛ(A).

SO(3) versus SU(2). SO(3) = SU(2)/Z2 requires DΛ(I2) = DΛ(−I2), but

−I2 = Exp(iπH), H = diag(1,−1)

so DΛ(−I2) = Exp(iπRΛ(H)) has eigenvalues eiπλ = (−1)λ = (−1)Λ:

1) Λ ∈ 2Z, then DΛ represents both SU(2) and SO(3);

2) Λ ∈ 2Z + 1, then DΛ represents SU(2) but not SO(3).

5 Representation�eory

De�nition (Conjugate representation). �e conjugate representation of a representation R of a real Lie algebra g is
R̄(X) = R(X)∗ ∀X ∈ g.

Remark. Possibly R̄ ' R.
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Direct sum. �e direct sum R1 ⊕R2 is a representation acting on V1 ⊕ V2 = {v1 ⊕ v2},

(R1 ⊕R2)(X)(v1 ⊕ v2) = R1(X)v1 ⊕R2(X)v2

with the matrix (R1 ⊕R2)(X) =
(
R1(X) 0

0 R2(X)

)
and dim(R1 ⊕R2) = dimR1 + dimR2.

Tensor product. �e tensor product R1 ⊗R2 is a representation acting on V1 ⊗ V2 = {v1 ⊕ v2},

(R1 ⊗R2)(X) = R1(X)⊗ I(2) + I(1) ⊗R2(X)

with the matrix (R1 ⊗R2)(X)iα,jβ = R1(X)ijIαβ + IijR2(X)αβ and dim(R1 ⊗R2) = dimR1 dimR2.
Remark. If R is reducible, there is a basis in which R(X) = ( ∗ ∗0 ∗ )∀X ∈ g. If R is fully reducible, there exists a basis
in which R(X) =

⊕
iRi(X) ∀X ∈ g for irreps Ri.

Fact 1. If Ri are �nite-dimensional irreducible representations of a simple Lie algebra, then
⊗m

i=1Ri =
⊕m̃

j=1 R̃j is
fully reducible into irrep R̃j .

Examples. Let RΛ, RΛ′ be irreducible representations of L(SU(2)) then

RΛ ⊗RΛ′ =
⊕

Λ′′∈N
lΛ
′′

Λ,Λ′RΛ′′

where lΛ′′Λ,Λ′ ∈ N are the Li�lewood–Richardson coe�cients. Note SΛ,Λ′ = {λ + λ′ : λ ∈ SΛ, λ
′ ∈ SΛ′} and

lΛ+Λ′

Λ,Λ′ = 1. Example: R1 ⊗R1 = R0 ⊕R2 and lΛ′′1,1 = δΛ′′,2 + δΛ′′,0.

De�nition (Inner product). An inner product is a symmetric bilinear form V × V → F. It is non-degenerate if
∀ v ∈ V \{0}, ∃w ∈ V s.t. (v, w) 6= 0.

De�nition (Killing form). �e Killing form is

κ : g× g −→ F
(X,Y ) 7−→ tr(adX ◦ adY ).

Remark. κab = fadc f
bc
d .

Invariance under adjoint action. κ(X, [Y, Z]) + κ(Y, [X,Z]) = 0.

Fact 2. If g is simple, the Killing form κ gives rise to the unique inner product (up to constant rescaling) that is
invariant under the transformation δZ : X 7→ X + [Z,X].

De�nition (Semi-simplicity). A Lie algebra is semi-simple if it has no non-zero abelian ideals.

�eorem 2. If g is �nite-dimensional and semi-simple, it is the direct sum of �nitely many simple Lie algebras.

�eorem 3 (Cartan). �e Killing form κ is non-degenerate i� the Lie algebra g is semi-simple.

Remark. Complex Lie algebras may have more than one real form, e.g. bothL(SU(2)) andL(SL(2,R)) are complexi�ed
to LC(SU(2)).
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Examples. L(SU(2)) = {2× 2 traceless skew-Hermitian matrices},
LC(SU(2)) = {2× 2 traceless complex matrices} ' L(SL(2,C)).

De�nition (Compact type). A real Lie algebra is of compact type if there is a basis s.t. κab = −κδab, κ > 0.

�eorem 4. Every �nite-dimensional complex semi-simple Lie algebra has a real form of compact type.

6 Cartan Classi�cation of Finite-Dimensional Simple Complex Lie Algebras

De�nition (Adjointly diagonalisable). X ∈ g is adjointly diagonalisable (a.d.) if adX : g→ g is diagonalisable.

De�nition (Cartan subalgebra). A Cartan subalgebra h of g is a maximal abelian subalgebra containing only a.d.
elements.

Fact 3. All possible Cartan subalgebras h ⊂ g have the same dimension r ≡ dim h known as the rank of g.

Examples. For g = LC(SU(n)) consisting of traceless complex matrices, (H i)αβ = δαiδβi − δαi+1δβi+1, 1 6 i 6
n− 1. Hence rank g = n− 1.

Properties.

1) H ∈ h implies H is a.d.;

2) H,H ′ ∈ h⇒ [H,H ′] = 0⇒ adH ◦ adH′ = adH′ ◦ adH ;

3) X ∈ g and [X,H] = 0∀H ∈ h imply X ∈ h.
Remark. [H i, Hj ] = 0 so adHi are simultaneously diagonalisable. �e spectrum includes:

1) zero eigenvalues {Hj : j = 1, . . . , r};

2) nonzero eigenvalues {Eα : α ∈ Φ} for which adHi(Eα) = αiEα, where α are roots.

Fact 4. Roots α : h→ C of g are non-degenerate elements of the dual vector space h∗.

Remark. α : H = eiH
i 7→ αiei since [H,Eα] = α(H) = αieiE

α.

De�nition (Cartan–Weyl basis). �e Cartan–Weyl basis for g is

B = {H i : i = 1, . . . , r} ∪ {Eα : α ∈ Φ}

satisfying [H i, Hj ] = 0, [H i, Eα] = αiEα.

Remark. |Φ| = dim g− rank g.

De�nition (Killing form). On the simple Lie algebra g

κ(X,Y ) =
1

N
tr(adX ◦ adY )

for some normalisation constant N > 0.

Remark. By simplicity, κ is non-degenerate by Cartan’s theorem.

6
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Proposition 5.

1) κ(H,Eα) = 0∀H ∈ h, α ∈ Φ;

2) κ(Eα, Eβ) = 0 ∀α, β ∈ Φ : α+ β 6= 0;

3) ∀H ∈ h, ∃H ′ ∈ h s.t. κ(H,H ′) 6= 0;

4) α ∈ Φ⇒ −α ∈ Φ and κ(Eα, E−α) 6= 0.

Remark. (3) says κ is non-degenerate on h, inducing a non-degenerate inner product on h∗

(α, β) = (κ−1)ijα
iβj ,

and an isomorphismK : H ∈ h 7→ κ(H, · ) ∈ h∗.

Result. By invariance of the Killing form,

[H i, [Eα, Eβ]] = (αi + βi)[Eα, Eβ]

κ([Eα, E−α], H) = α(H)κ(Eα, E−α) 6= 0

so κ(Hα, H) = α(H) for all H ∈ h has the unique solution

Hα =
[Eα, E−α]

κ(Eα, E−α)

by non-degeneracy, i.e. Hα = (κ−1)ijα
jH i.

Cartan-Weyl algebra.

eα =

√
2

(α, α)κ(Eα, E−α)
Eα, hα =

2

(α, α)
Hα

satis�es

[hα, hβ] = 0, [hα, eβ] =
2(α, β)

(α, α)
eβ (1)

[eα, eβ] =


nα,βe

α+β, α+ β ∈ Φ
hα, α+ β = 0
0, else.

(2)

sl(2)α subalgebra. [hα, e±α] = ±2e±α, [eα, e−α] = hα.

De�nition (Root string). For roots β 6∝ α in Φ, the α-string passing through β is

Sα,β = {β + nα ∈ Φ : n ∈ Z}.

Remark. �e corresponding vector subspace

Vα,β = spanC{e
β+nα ∈ g : n ∈ Z}

is an invariant subspace under sl(2)α, thus is the representation space for some representation R of sl(2)α, with
weight set

SR =

{
2

[
n+

(α, β)

(α, α)

]
: β + nα ∈ Φ, n− 6 n 6 n+, n ∈ Z

}
,

2(α, β)

(α, α)
= −(n+ + n−).

7



2017 © Mike S. Wang 8

Proposition 6. (α, β) ∈ R.

Lemma 7. h∗ = spanC{α : α ∈ Φ}.

Corollary 8. dim g > 2 rank g.

Lemma 9. Φ ⊂ h∗R = spanR{α(i) ∈ Φ : i = 1, · · · , r}.

Proposition 10. Roots α ∈ Φ are elements of the real vector space h∗R ' Rr where r = rank g, equipped with a Euclidean
inner product ( · , · ) s.t. for all λ, µ ∈ h∗R,

1) (λ, µ) ∈ R;

2) (λ, λ) > 0 with equality i� λ = 0.

De�nition (Norm and angle). �e norm of a root α is

|α| :=
√

(α, α) > 0.

�e angle between any two roots, φ ≡ ](α, β), is given by

(α, β) = |α||β| cosφ, φ ∈ [0, π].

Lemma 11. 4 cos2 φ ∈ {0, 1, 2, 3, 4}.

De�nition (Simple root). A simple root δ ∈ ΦS is a positive root that cannot be wri�en as a sum of two positive roots.

Proposition 12.

1) If α, β ∈ ΦS , then α− β is not a root;

2) If α, β ∈ ΦS , then the length of the α-string passing through β is

lα,β = 1− 2(α, β)

(α, α)
∈ N\{0};

3) If α, β ∈ ΦS and α 6= β, (α, β) 6 0;

4) Any positive root can be wri�en as a linear combination of simple roots with positive integer coe�cients, i.e.

β ∈ Φ+ =⇒ β =
∑
i

ciα(i), α(i) ∈ ΦS , ci ∈ N;

5) Simple roots are linearly independent;

6) �ere are exactly r = rank g simple roots, i.e. |ΦS | = r.

De�nition. Let B = {α(i) ∈ ΦS : i = 1, . . . , r} be an enumerated basis for h∗R. �e Cartan matrix A is

Aij := 2
(α(i), α(j))

(α(j), α(j))
∈ Z, i, j = 1, . . . , r.

8
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Simple root algebra. For each α(i) ∈ ΦS there is an associated sl(2) = span{hi ≡ hα(i) , ei± ≡ e±α(i)} obeying

[hi, ei±] = ±2ei±, [ei+, e
i
−] = hi.

�e ‘Cartan–Weyl algebra’ becomes

[hi, hj ] = 0

[hi, ej±] = ±Ajiej±
[ei+, e

j
−] = δijhi.

(Chevalley–)Serra relation. ad1−Aji
ei±

ej± = 0.

�eorem 13 (Cartan). A �nite-dimensional simple complex Lie algebra is uniquely determined by its Cartan matrix.

Remark. �e Cartan matrix determines simple roots α(i), i = 1, . . . , r up to the choice of the �rst vector α(1) ∈ Rr ,
and the remaining via root strings

Constraints.

1) Aii = 2, i = 1, . . . , r;

2) Aij = 0 ⇔ Aji = 0;

3) Aij ∈ Z60 for i 6= j by property 3) of simple roots;

4) detA > 0 by non-degeneracy of the Euclidean inner product ( · , · );

5) A is irreducible.

Remark.
|α(i)|
|α(j)|

=

√
Aij

Aji
, cos2 φij =

1

4
AijAji.

Lemma 14. A simple Lie algebra has simple roots of at most two di�erent lengths.

Cartan classi�cation.

An
1 2 3 n− 1 n

e.g. LC(SU(n+ 1))

Bn
1 2 3 n− 1 n

e.g. LC(SO(2n+ 1))

Cn
1 2 3 n− 1 n

e.g. LC(Sp(2n))

Dn

1 2 3 n− 2

n

n− 1
e.g. LC(SO(2n))

9
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E6 E7

E8 F4 G2

Remark.

1) n = 1, A1 = B1 = C1 = D1 ' LC(SU(2)), e.g. LC(SU(2)) ' LC(SO(3));

2) n = 2, B2 = C2 and D2 ' A1 ⊕A1;

3) n = 3, D3 = A3.

Representation of simple Lie algebras. Consider a representation R of the simple Lie algebra g acting on repre-
sentation space R(H i)R(Eα)v = (λi + αi)R(Eα)v, i.e. each weight λ is shi�ed by roots α under the action of step
operators.

Remark. R(hα)vλ =
2(α, λ)

(α, α)
vλ so

2(α, λ)

(α, α)
∈ SRα for some representation Rα of sl(2).

De�nition (Co-root and la�ices). Simple co-roots α∨(i) =
2α(i)

(α(i), α(i))
. �e root la�ice and co-root la�ice are

L[g] := spanZ{α(i) : i = 1, . . . , r}, L∨[g] := spanZ{α
∨
(i) : i = 1, . . . , r}.

�e weight la�ice is dual to the co-root la�ice

LW [g] := L∨
∗
[g] ≡ {λ ∈ h∗R : (λ, µ) ∈ Z∀µ ∈ L∨[g]}.

Remark. All weights are in the weight la�ice SR ⊂ LW [g].
De�nition. Given a basis B = {α∨(i) : i = 1, . . . , r} of the co-root la�ice L∨[g], the fundamental weights of g are the
dual basis B∗ = {ω(i) : i = 1, . . . , r} for LW [g] satisfying (α∨(i), ω(j)) = δij .

Remark. α(i) =
∑r

j=1A
ijω(j).

De�nition (Dynkin labels). For any weight λ ∈ SR ⊆ LW [g], λ =
∑r

i=1 λ
iω(i) where {λi} are the Dynkin labels of

λ.
De�nition (Highest weight). �e highest weight Λ of a representation R has its eigenvector vΛ ∈ V annihilated by
all step operators

R(Eα)vΛ = 0 ∀α ∈ Φ+.

De�nition (Dynkin labels). Given any �nite-dimensional representation R of g labelled by its highest weight
Λ =

∑r
i=1 Λiω(i) ∈ SR, its Dynkin labels are {Λi ∈ Z}.

Fact 5. For any �nite-dimensional representation R of g,

λ =

r∑
i=1

λiω(i) ∈ SR =⇒ λ−m(i)α(i) ∈ SR

where 0 6 m(i) 6 λi,m(i) ∈ N.
De�nition (Dominant integral weight). λ =

∑
i λ

iω(i) is a dominant integral weight if λi ∈ N. Denote the set of
dominant integral weights by LW .

10
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Irreducible Representations of A2

Fact 6. Each dominant integral weight in A2

Λ = Λ1ω(1) + Λ2ω(2) ∈ LW , Λ1,2 ∈ N

gives an irreducible representation (irrep.) R(Λ1,Λ2) of dimension

dimR(Λ1,Λ2) =
1

2
(Λ1 + 1)(Λ2 + 1)(Λ1 + Λ2 + 2).

For Λ1 6= Λ2, R(Λ2,Λ1) = R(Λ1,Λ2) with their weights related by re�ection: λ ∈ S(Λ1,Λ2) ⇔ −λ ∈ S(Λ2,Λ1).

Claim 15. λ ∈ SΛ, λ′ ∈ SΛ′ ⇒ λ+ λ′ ∈ LW [g] and λ+ λ′ ∈ SRΛ⊗RΛ′ .

Table 1: A2 irreps of lowest dimensions.
Repn. Notn. Remarks
R(0,0) 1 trivial
R(1,0) 3 fundamental
R(0,1) 3 anti-fundamental
R(1,1) 8 adjoint

Conclusion. Let RΛ, labelled by the highest weight Λ ∈ LW [g], rep-
resent irreducibly the �nite-dimensional, simple, complex Lie algebra
g:

1) Every such g has a real form of compact type with κab =
−κδab, κ > 0;

2) gR = L(G) is classi�ed by Cartan;

3) Every irrep RΛ of g provides an irrep RΛ of gR as well as an
irrep DΛ = Exp(RΛ) of G. Further, DΛ is unitary so RΛ(X)† +
RΛ(X) = 0 for all X ∈ gR.

7 Gauge �eory

De�nition. In relativistic electromagnetism, the 4-potential is aµ := (Φ,A) with the �eld strength tensor fµν :=
∂µaν − ∂νaµ.

Remark. Under the gauge transformation aµ → aµ + ∂µχ. Re-de�ne Aµ = −iaµ ∈ iR ' L(U(1)) and Fµν = −ifµν .

De�nition (Global U(1)-gauge scalar �eld). A global U(1)-gauge complex scalar �eld φ : R3,1 → C with Lagrangian
density

Lφ = ∂µφ
∗∂µφ−W (φ∗φ)

is invariant under U(1) global symmetry φ→ gφ, where g = eiδ ∈ U(1).

[To couple the scalar �eld to EM and obtain a quantum theory describing scalar ‘electrons’ interacting with photons,
we gauge the U(1) symmetry.]

De�nition (Local U(1)-gauge scalar �eld). Promoting the above to be g : R3,1 → U(1) and X : R3,1 → L(U(1)), we
obtain a local U(1)-gauge complex scalar �eld φ : R3,1 → C with Lagrangian density

L = − 1

4g2
FµνF

µν + (Dµφ)∗Dµφ−W (φ∗φ),

11



2017 © Mike S. Wang 12

invariant under U(1) local symmetry

δXφ = εXφ, δXAµ = −ε∂µX,

i.e. aµ → aµ + ∂µχ with χ = −iεX , where the U(1) gauge �eld Aµ : R3,1 → L(U(1)) ' iR and the covariant
derivative Dµ := ∂µ +Aµ.

Exercise. Show the kinetic term (Dµφ)∗Dµφ is invariant under gauge transformations from δX(Dµφ) = εXDµφ.

De�nition (Global gauge scalar �eld). LetG be a gauge Lie group with unitary representationD, i.e. DΛ(g)†DΛ(g) =
I∀ g ∈ G, and a representation space V ' CN equipped with the standard inner product (u, v) = u† · v, u, v ∈ V . A
global gauge scalar �eld φ : R3,1 → V has a Lagrangian

Lφ = (∂µφ, ∂
µφ)−W ((φ, φ))

invariant under the global symmetry transformation φ→ D(g)φ ∀ g ∈ G.

Remark. Near the identity g = Exp(εX) andD(g) = Exp(εR(X)) whereR : L(G)→ MatN (C) is the representation
of the Lie algebra satisfying R(X)† +R(X) = 0∀X ∈ L(G). In�nitesimally, D(g) ' I + εR(X) and

φ −→ φ+ δXφ, δXφ = εR(X)φ ∈ V.

De�nition (Local gauge scalar �eld). Promoting the above to X : R3,1 → L(G), we obtain a local gauge scalar �eld
φ with the gauge-invariant Lagrangian

L = (Dµφ,D
µφ)−W ((φ, φ)) ,

the gauge �eld Aµ : R3,1 → L(G) and transformations

δXφ = εR(X(x))φ ∈ V, δXAµ = −ε∂µX + ε[X,Aµ] ∈ L(G).

where the covariant derivative Dµ := ∂µ +R(Aµ).

Exercise. Show the kinetic term (Dµφ)∗Dµφ is invariant under gauge transformations from δX(Dµφ) = εR(X)Dµφ.

De�nition (Field strength tensor). �e �eld strength tensor Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] ∈ L(G).

Remark. �e �rst two terms are linear and the bracket is quadratic in Aµ, allowing us to rescale so that the coe�cient
of the bracket is 1. Hence this de�nition is general.

Claim 16. δX(Fµν) = ε[X,Fµν ] ∈ L(G).

De�nition (Yang–Mills Lagrangian). LA =
1

g2
κ(Fµν , F

µν).

Remark. �is is gauge-invariant δXLA = 0 due to the invariance property of the Killing form.

Construction of gauge-invariant theories. By simplicity, the Lie algebra associated with the gauge symmetry has
a real form of compact type, providing a sensible kinetic term for the gauge �eld. In other words, there is a basis
B = {T a}d≡dimG

a=1 s.t. κab ≡ κ(T a, T b) = −κδab, κ > 0. Hence with Fµν = (Fµν)aT
a ∈ L(G)

LA = − κ

g2

d∑
a=1

(Fµν)a(F
µν)a.

A large family of consistent theories are provided by the Cartan Classi�cation with data:

12
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1) gauge group
G (compact, simple) → gR = L(G) (of compact type, simple)

with associated gauge �eld Aµ : R3,1 → L(G) satisfying its transformation rule;

2) ma�er content
φΛ : R3,1 → VΛ, Λ ∈ S = L̄W [g]

where RΛ are irreps of gR acting on representation space VΛ labelled by weights Λ.

Full Lagrangian.
With strength tensor Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] and the covariant derivative Dµ = ∂µ +RΛ(Aµ),

L =
1

g2
κ(Fµν , F

µν) +
∑
Λ∈S

(DµφΛ,D
µφΛ)−W ({(φΛ, φΛ) : Λ ∈ S})

is invariant under the gauge transformation

δXφΛ = εRΛ(X)φΛ, δXAµ = −ε∂µX + ε[X,Aµ]

speci�ed by X : R3,1 → L(G).
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