Review of Symmetries, Fields and Particles

Mathematical Tripos Part III

Easter Term, 2017

1 Lie Groups

Definition (Symmetry). A *symmetry* is a transformation of dynamic variables that leaves the form of physical laws invariant.

Definition (Lie group). A *Lie group* is a group manifold with dimension that of the manifold.

Remark. Smoothness reduces understanding to near the identity.

Classifying Lie groups reduces to classifying Lie algebras. Degeneracies in the spectrum of a quantum system are determined by irreducible representations of the global symmetry.

Examples.

- 1) O(n) has two disconnected pieces and is length-preserving;
- 2) SO(*n*) preserves the sign of the volume element $\Omega = \varepsilon_{i_1 \cdots i_n} v_1^{i_1} \cdots v_n^{i_n}$ where $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a frame in \mathbb{R}^n .

Examples.

- 1) $M(\theta) = \cos \theta \mathbb{I}_2 \sin \theta \mathbb{J}_2 \in SO(2), \mathcal{M}(SO(2)) = S^1;$
- 2) $M(\boldsymbol{\omega}) = \cos \theta \delta_{ij} + (1 \cos \theta) n_i n_j \sin \theta \varepsilon_{ijk} n_k \in SO(3), \mathcal{M}(SO(3)) = B_3 \cup (\partial \bar{B}_3/\mathbb{Z}_2)$ where $\theta \equiv |\boldsymbol{\omega}|, \mathbf{n} \equiv \hat{\boldsymbol{\omega}}$. This is compact (closed and bounded), connected but not simply connected.

Examples. Non-compact signature-preserving group

$$\mathcal{O}(p,q) = \{ M \in \mathrm{GL}(n,\mathbb{R}) : M^T \eta M = \eta \}$$

where $\eta = \begin{pmatrix} I_p & 0 \\ 0 & -I_q \end{pmatrix}$, e.g. $M = \begin{pmatrix} \cosh \theta & \sinh \theta \\ \sinh \theta & \cosh \theta \end{pmatrix} \in \mathrm{SO}(1,1)$.

Definition (Isomorphism). $G \simeq G'$ if there exists a bijective homomorphism.

2 Lie Algebras

Definition (Lie algebra). A *Lie algebra* is a vector space over a field with an antisymmetric, bilinear map known as a *Lie bracket* that satisfies the *Jacobi identity*.

Remark. A vector space V with an associative product has a natural Lie algebra. By Jaboci, the structure constants satisfy $f^{ab}_{\ c} f^{cd}_{\ e} + f^{bd}_{\ c} f^{ca}_{\ e} + f^{da}_{\ c} f^{cb}_{\ e} = 0.$

Definition (Lie algebra isomorphism). $\mathfrak{g} \simeq \mathfrak{g}'$ if the underlying isomorphism preserves the Lie bracket.

Remark. Classification of Lie algebras is up to isomorphisms.

Definition (Ideal). An *ideal* of \mathfrak{g} is a subalgebra with strong closure, i.e. $[X, Y] \in \mathfrak{h} \,\forall \, X \in \mathfrak{h}, Y \in \mathfrak{g}$.

Examples.

- 1) Trivial ideals $\mathfrak{h} = \{0\}, \mathfrak{g};$
- 2) The derived algebra $\mathfrak{i}(\mathfrak{g}) \coloneqq [\mathfrak{g}, \mathfrak{g}] \equiv \operatorname{span}_{\mathbb{F}} \{ [X, Y] : X, Y \in \mathfrak{g} \};$
- 3) The centre $\mathfrak{z}(\mathfrak{g}) \coloneqq \{X \in \mathfrak{g} : [X, Y] = 0 \,\forall Y \in \mathfrak{g}\}.$

Definition (Simplicity). A Lie algebra g is simple if it is non-abelian and possesses no non-trivial ideals.

Remark. For simple $\mathfrak{g}, \mathfrak{z}(\mathfrak{g}) = \{0\}, \mathfrak{i}(\mathfrak{g}) = \mathfrak{g}$. For abelian $\mathfrak{g}, \mathfrak{z}(\mathfrak{g}) = \mathfrak{g}, \mathfrak{i}(\mathfrak{g}) = \{0\}$.

3 Lie Algebras from Lie Groups

Definition (Tangent space). The tangent space $T_p\mathcal{M}$ to \mathcal{M} at p is a D-dimensional vector space spanned by $\{\partial_j\}_{j=1}^D$. A tangent vector $V = v^i \partial_i \in T_p\mathcal{M}$ acts on functions $f : \mathcal{M} \to \mathbb{R}$ as $V(f) = v^i \partial_i f(x)|_{x=0}$.

Definition (Curve). A smooth curve $C : \mathbb{R} \to \mathcal{M}$ is continuous and once-differentiable.

The Lie algebra associated with a Lie group is $\mathfrak{L}(G) = (\mathcal{T}_e(G), [\cdot, \cdot])$.

Examples.

- $\mathfrak{L}(SO(n)) = \mathfrak{L}(O(n)) = \{\text{real skew-symmetric matrices}\};$
- $\mathfrak{L}(SU(n)) = \{$ traceless skew-Hermitian matrices $\};$
- $\mathfrak{L}(\mathrm{SU}(2))$ spanned by $T^a = -i\sigma_a/2$ and $\mathfrak{L}(\mathrm{SO}(3))$ spanned by $(\tilde{T}^a)_{bc} = -\varepsilon_{abc}$ both with $f^{ab}_{\ c} = \varepsilon_{abc}$. *Remark.* Although $\mathrm{SO}(3) \not\simeq \mathrm{SU}(2), \mathfrak{L}(\mathrm{SO}(3)) = \mathfrak{L}(\mathrm{SU}(2)).$

Definition (Translation maps). The *left* and *right translations* associated with $h \in G$ are $L_h : g \mapsto hg$ and $R_h : g \mapsto gh$. *Remark.* They are bijective and *diffeomorphisms* of G.

 $L_h: g \mapsto hg(\theta) = g(\theta') \text{ is specified by } \theta' \equiv \theta'(\theta) \text{ with Jacobian } J_j^i = \frac{\partial \theta'^i}{\partial \theta^j}. \text{ This induces a linear map } \forall g$ $L_h^*: \mathcal{T}_g(G) \longrightarrow \mathcal{T}_{hg}(G), \quad v = v^i \frac{\partial}{\partial \theta^i} \longmapsto v' = v'^i \frac{\partial}{\partial \theta'^i},$

where $v'^i = J^i_i(\theta) v^j$.

Definition (Left-invariant vector field). The *left-invariant vector field* given $w \in \mathcal{T}_e(G)$ is $V : g \mapsto L_a^*(w)$.

Remark. This is smooth and non-vanishing.

 $\textbf{Claim 1.} \ L_h^*(X) = hX \in \mathcal{T}_h(G) \ \forall h \in G, X \in \mathfrak{L}(G). \ \textit{In particular, } g^{-1}(t)\dot{g}(t) = L_{g^{-1}}^*(\dot{g}(t)) \in \mathfrak{L}(G).$

Remark. Conversely, given $X \in \mathfrak{L}(G)$, we can construct a curve $C : \mathbb{R} \to G$ by solving the ODE $g^{-1}(t)\dot{g}(t) = X$ for all t subject to $g(0) = I_n$.

Definition (Exponential map). $\operatorname{Exp}(M) \coloneqq \sum_{l=0}^{\infty} M^l / l! \in \operatorname{Mat}_n(\mathbb{F})$ provided it converges for $M \in \operatorname{Mat}_n(\mathbb{F})$.

Remark. The exponential map $\text{Exp} : \mathfrak{L}(G) \to G$ is bijective in some neighbourhood of e. With the correct choice of range \mathfrak{I} of $t, S_{X,\mathfrak{I}} \coloneqq \{g(t) = \text{Exp}(tX) : t \in \mathfrak{I} \subseteq \mathbb{R}\}$ is an abelian Lie subgroup of G.

Baker-Campbell-Hausdorff (BCH) formula.

$$\operatorname{Exp}(X)\operatorname{Exp}(Y) = \operatorname{Exp}\left\{X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}\left([X, [X, Y]] - [Y, [X, Y]]\right) + \cdots\right\}.$$

Remark. Provided convergence in the BCH formula, $\mathfrak{L}(G)$ completely determines G in some neighbourhood of e. But globally the exponential map is not bijective: not surjective when G is not connected; not injective when G has a U(1) subgroup.

Examples.

L(O(n)) = {X ∈ Mat_n(F) : X + X^T = 0} so tr X = 0. But det ExpX = exp tr X = 1, Exp(L(O(n))) = SO(n) ≠ O(n);
 L(U(1)) = {X = ix : x ∈ ℝ}. Since g = ExpX = e^{ix} ∈ U(1), ix ~ ix + 2iπ.

4 Representation of Lie Algebras

Definition (Representation). A *representation* d of a Lie algebra is a linear homomorphism to a set of matrices preserving the Lie bracket.

Remark. dim $d := \dim \mathcal{V} \neq \dim G$. Given representation D of a matrix Lie group G and $X \in \mathfrak{L}(G)$,

$$d(X) = \left. \frac{d}{dt} \right|_{t=0} D(g(t)).$$

Examples.

- 1) The trivial representation d_0 with $d_0(X) = 0 \in \mathbb{F}$ of dimension 1;
- 2) The fundamental representation d_f with $d_f(X) = X$ of dimension D;
- 3) The adjoint representation $d_{adj}(X) = ad_X$.

Definition (Adjoint map). Given $X \in \mathfrak{g}$, its *adjoint map* is $\operatorname{ad}_X : \mathfrak{g} \to \mathfrak{g}, Y \mapsto [X, Y]$.

Remark. $\left[d_{\mathrm{adj}}(X)\right]_{\ c}^{b} = X_{a}f_{\ c}^{ab}$ where $f_{\ c}^{ab}$ the structure constants of \mathfrak{g} .

Definition (Equivalence of representations). $R_1 \simeq R_2$ if there exists a non-singular matrix S s.t. $\forall X \in \mathfrak{g}, R_2(X) = SR_1(X)S^{-1}$.

Definition (Invariant subspace). A representation R with representation space \mathcal{V} has an *invariant subspace* $\mathcal{U} \subseteq \mathcal{V}$ if $R \cdot \mathcal{U} \subseteq \mathcal{U}$.

Remark. $\mathcal{U} = \{0\}, \mathcal{V}$ are trivial invariant subspaces.

Definition (Irreducibility). An irreducible representation (irrep) of a Lie algebra has no non-trivial invariant subspaces.

Representations of $\mathfrak{L}(SU(2))$

Roots. In basis $H = \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $E_{\pm} = (\sigma_1 \pm i\sigma_2)/2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, the *roots* of $\mathfrak{L}(SU(2))$ are the eigenvalues $\{0, \pm 2\}$ of eigenvectors $\{H, E_{\pm}\}$ of ad_H .

Weights. Given representation R that R(H) is diagonalisable, its eigenvectors span \mathcal{V} and its eigenvalues $\{\lambda\}$ are known as the *weights* of representation R.

Step operators. E_{\pm} obey $R(H)R(E_{\pm})v_{\lambda} = (\lambda \pm 2)R(E_{\pm})v_{\lambda}$.

Results. For a finite-dimensional, irreducible representation R_{Λ} of $\mathfrak{L}(SU(2))$ labelled by the highest weight $\Lambda \in \mathbb{N}$,

- 1) the weight set is $S_R = \{-\Lambda, -\Lambda + 2, \dots, \Lambda 2, \Lambda\} \subset \mathbb{Z};$
- 2) the weights are non-degenerate with $\dim(R_{\Lambda}) = \Lambda + 1$.

Representations from $\mathfrak{L}(SU(2))$

SU(2) representations. Obtained from Exp : $R_{\Lambda}(X) \mapsto D_{\Lambda}(A)$.

SO(3) versus **SU**(2). SO(3) = SU(2)/ \mathbb{Z}_2 requires $D_{\Lambda}(I_2) = D_{\Lambda}(-I_2)$, but

 $-I_2 = \operatorname{Exp}(i\pi H), \quad H = \operatorname{diag}(1, -1)$

so $D_{\Lambda}(-I_2) = \operatorname{Exp}(i\pi R_{\Lambda}(H))$ has eigenvalues $e^{i\pi\lambda} = (-1)^{\lambda} = (-1)^{\Lambda}$:

1) $\Lambda \in 2\mathbb{Z}$, then D_{Λ} represents both SU(2) and SO(3);

2) $\Lambda \in 2\mathbb{Z} + 1$, then D_{Λ} represents SU(2) but not SO(3).

5 Representation Theory

Definition (Conjugate representation). The *conjugate representation* of a representation R of a real Lie algebra \mathfrak{g} is $\overline{R}(X) = R(X)^* \forall X \in \mathfrak{g}$.

Remark. Possibly $\overline{R} \simeq R$.

Direct sum. The direct sum $R_1 \oplus R_2$ is a representation acting on $V_1 \oplus V_2 = \{v_1 \oplus v_2\}$,

$$(R_1 \oplus R_2)(X)(v_1 \oplus v_2) = R_1(X)v_1 \oplus R_2(X)v_2$$

with the matrix $(R_1 \oplus R_2)(X) = \begin{pmatrix} R_1(X) & 0 \\ 0 & R_2(X) \end{pmatrix}$ and $\dim(R_1 \oplus R_2) = \dim R_1 + \dim R_2$.

Tensor product. The tensor product $R_1 \otimes R_2$ is a representation acting on $V_1 \otimes V_2 = \{v_1 \oplus v_2\}$,

 $(R_1 \otimes R_2)(X) = R_1(X) \otimes I_{(2)} + I_{(1)} \otimes R_2(X)$

with the matrix $(R_1 \otimes R_2)(X)_{i\alpha,j\beta} = R_1(X)_{ij}I_{\alpha\beta} + I_{ij}R_2(X)_{\alpha\beta}$ and $\dim(R_1 \otimes R_2) = \dim R_1 \dim R_2$. *Remark.* If R is reducible, there is a basis in which $R(X) = \binom{*}{0} X \in \mathfrak{g}$. If R is *fully reducible*, there exists a basis in which $R(X) = \bigoplus_i R_i(X) \forall X \in \mathfrak{g}$ for irreps R_i .

Fact 1. If R_i are <u>finite-dimensional irreducible</u> representations of a <u>simple</u> Lie algebra, then $\bigotimes_{i=1}^{m} R_i = \bigoplus_{j=1}^{\tilde{m}} \tilde{R}_j$ is fully reducible into irrep \tilde{R}_j .

Examples. Let $R_{\Lambda}, R_{\Lambda'}$ be irreducible representations of $\mathfrak{L}(SU(2))$ then

$$R_\Lambda\otimes R_{\Lambda'}= igoplus_{\Lambda''\in\mathbb{N}} l_{\Lambda,\Lambda'}^{\Lambda''}R_{\Lambda'}$$

where $l_{\Lambda,\Lambda'}^{\Lambda''} \in \mathbb{N}$ are the Littlewood–Richardson coefficients. Note $S_{\Lambda,\Lambda'} = \{\lambda + \lambda' : \lambda \in S_{\Lambda}, \lambda' \in S_{\Lambda'}\}$ and $l_{\Lambda,\Lambda'}^{\Lambda+\Lambda'} = 1$. Example: $R_1 \otimes R_1 = R_0 \oplus R_2$ and $l_{1,1}^{\Lambda''} = \delta_{\Lambda'',2} + \delta_{\Lambda'',0}$.

Definition (Inner product). An *inner product* is a symmetric bilinear form $V \times V \to \mathbb{F}$. It is *non-degenerate* if $\forall v \in V \setminus \{0\}, \exists w \in V \text{ s.t. } (v, w) \neq 0$.

Definition (Killing form). The Killing form is

$$\kappa: \mathfrak{g} \times \mathfrak{g} \longrightarrow \mathbb{F}$$
$$(X, Y) \longmapsto \operatorname{tr}(\operatorname{ad}_X \circ \operatorname{ad}_Y).$$

Remark. $\kappa^{ab} = f^{ad}_{\ c} f^{bc}_{\ d}$.

Invariance under adjoint action. $\kappa(X, [Y, Z]) + \kappa(Y, [X, Z]) = 0.$

Fact 2. If \mathfrak{g} is <u>simple</u>, the Killing form κ gives rise to the unique inner product (up to constant rescaling) that is invariant under the transformation $\delta_Z : X \mapsto X + [Z, X]$.

Definition (Semi-simplicity). A Lie algebra is semi-simple if it has no non-zero abelian ideals.

Theorem 2. If g is <u>finite-dimensional and semi-simple</u>, it is the direct sum of <u>finitely many simple Lie algebras</u>.

Theorem 3 (Cartan). The Killing form κ is non-degenerate iff the Lie algebra \mathfrak{g} is <u>semi-simple</u>.

Remark. Complex Lie algebras may have more than one real form, e.g. both $\mathfrak{L}(SU(2))$ and $\mathfrak{L}(SL(2,\mathbb{R}))$ are complexified to $\mathfrak{L}_{\mathbb{C}}(SU(2))$.

Examples. $\mathfrak{L}(SU(2)) = \{2 \times 2 \text{ traceless skew-Hermitian matrices}\},$ $\mathfrak{L}_{\mathbb{C}}(SU(2)) = \{2 \times 2 \text{ traceless complex matrices}\} \simeq \mathfrak{L}(SL(2,\mathbb{C})).$

Definition (Compact type). A <u>real</u> Lie algebra is of *compact type* if there is a basis s.t. $\kappa^{ab} = -\kappa \delta^{ab}, \kappa > 0$. **Theorem 4.** Every <u>finite-dimensional complex semi-simple</u> Lie algebra has a real form of compact type.

6 Cartan Classification of Finite-Dimensional Simple Complex Lie Algebras

Definition (Adjointly diagonalisable). $X \in \mathfrak{g}$ is *adjointly diagonalisable* (a.d.) if $\operatorname{ad}_X : \mathfrak{g} \to \mathfrak{g}$ is diagonalisable.

Definition (Cartan subalgebra). A *Cartan subalgebra* \mathfrak{h} of \mathfrak{g} is a <u>maximal abelian</u> subalgebra containing <u>only a.d.</u> elements.

Fact 3. All possible Cartan subalgebras $\mathfrak{h} \subset \mathfrak{g}$ have the same dimension $r \equiv \dim \mathfrak{h}$ known as the *rank* of \mathfrak{g} .

Examples. For $\mathfrak{g} = \mathfrak{L}_{\mathbb{C}}(\mathrm{SU}(n))$ consisting of traceless complex matrices, $(H^i)_{\alpha\beta} = \delta_{\alpha i}\delta_{\beta i} - \delta_{\alpha i+1}\delta_{\beta i+1}, 1 \leq i \leq n-1$. Hence rank $\mathfrak{g} = n-1$.

Properties.

- 1) $H \in \mathfrak{h}$ implies H is a.d.;
- 2) $H, H' \in \mathfrak{h} \Rightarrow [H, H'] = 0 \Rightarrow \mathrm{ad}_H \circ \mathrm{ad}_{H'} = \mathrm{ad}_{H'} \circ \mathrm{ad}_H;$
- 3) $X \in \mathfrak{g}$ and $[X, H] = 0 \forall H \in \mathfrak{h}$ imply $X \in \mathfrak{h}$.

Remark. $[H^i, H^j] = 0$ so ad_{H^i} are simultaneously diagonalisable. The spectrum includes:

- 1) zero eigenvalues $\{H^j : j = 1, ..., r\};$
- 2) nonzero eigenvalues $\{E^{\alpha} : \alpha \in \Phi\}$ for which $\operatorname{ad}_{H^{i}}(E^{\alpha}) = \alpha^{i} E^{\alpha}$, where α are *roots*.

Fact 4. *Roots* $\alpha : \mathfrak{h} \to \mathbb{C}$ of \mathfrak{g} are <u>non-degenerate</u> elements of the dual vector space \mathfrak{h}^* .

Remark. $\alpha: H = e_i H^i \mapsto \alpha^i e_i$ since $[H, E^{\alpha}] = \alpha(H) = \alpha^i e_i E^{\alpha}$.

Definition (Cartan–Weyl basis). The *Cartan–Weyl basis* for \mathfrak{g} is

$$\mathcal{B} = \{H^i : i = 1, \dots, r\} \cup \{E^\alpha : \alpha \in \Phi\}$$

satisfying $[H^i, H^j] = 0, [H^i, E^{\alpha}] = \alpha^i E^{\alpha}.$

Remark. $|\Phi| = \dim \mathfrak{g} - \operatorname{rank} \mathfrak{g}$.

Definition (Killing form). On the simple Lie algebra \mathfrak{g}

$$\kappa(X,Y) = \frac{1}{N}\operatorname{tr}(\operatorname{ad}_X \circ \operatorname{ad}_Y)$$

for some normalisation constant N > 0.

Remark. By simplicity, κ is non-degenerate by Cartan's theorem.

Proposition 5.

1) $\kappa(H, E^{\alpha}) = 0 \forall H \in \mathfrak{h}, \alpha \in \Phi;$ 2) $\kappa(E^{\alpha}, E^{\beta}) = 0 \forall \alpha, \beta \in \Phi : \alpha + \beta \neq 0;$ 3) $\forall H \in \mathfrak{h}, \exists H' \in \mathfrak{h} \text{ s.t. } \kappa(H, H') \neq 0;$ 4) $\alpha \in \Phi \Rightarrow -\alpha \in \Phi \text{ and } \kappa(E^{\alpha}, E^{-\alpha}) \neq 0.$

Remark. (3) says κ is non-degenerate on \mathfrak{h} , inducing a non-degenerate inner product on \mathfrak{h}^*

$$(\alpha,\beta) = (\kappa^{-1})_{ij}\alpha^i\beta^j,$$

and an isomorphism $K: H \in \mathfrak{h} \mapsto \kappa(H, \, \boldsymbol{\cdot}\,) \in \mathfrak{h}^*.$

Result. By invariance of the Killing form,

$$\begin{split} [H^i, [E^{\alpha}, E^{\beta}]] &= (\alpha^i + \beta^i)[E^{\alpha}, E^{\beta}]\\ \kappa([E^{\alpha}, E^{-\alpha}], H) &= \alpha(H)\kappa(E^{\alpha}, E^{-\alpha}) \neq 0 \end{split}$$

so $\kappa(H^\alpha,H)=\alpha(H)$ for all $H\in\mathfrak{h}$ has the unique solution

$$H^{\alpha} = \frac{[E^{\alpha}, E^{-\alpha}]}{\kappa(E^{\alpha}, E^{-\alpha})}$$

by non-degeneracy, i.e. $H^{\alpha}=(\kappa^{-1})_{ij}\alpha^{j}H^{i}.$

Cartan-Weyl algebra.

$$e^{\alpha} = \sqrt{\frac{2}{(\alpha,\alpha)\kappa(E^{\alpha},E^{-\alpha})}}E^{\alpha}, \quad h^{\alpha} = \frac{2}{(\alpha,\alpha)}H^{\alpha}$$

satisfies

$$[h^{\alpha}, h^{\beta}] = 0, \quad [h^{\alpha}, e^{\beta}] = \frac{2(\alpha, \beta)}{(\alpha, \alpha)} e^{\beta}$$
(1)

$$[e^{\alpha}, e^{\beta}] = \begin{cases} n_{\alpha,\beta} e^{\alpha+\beta}, & \alpha+\beta \in \Phi\\ h^{\alpha}, & \alpha+\beta = 0\\ 0, & \text{else.} \end{cases}$$
(2)

 $\mathfrak{sl}(2)_{\alpha}$ subalgebra. $[h^{\alpha}, e^{\pm \alpha}] = \pm 2e^{\pm \alpha}, [e^{\alpha}, e^{-\alpha}] = h^{\alpha}.$

Definition (Root string). For roots $\beta \not\propto \alpha$ in Φ , the α -string passing through β is

$$S_{\alpha,\beta} = \{\beta + n\alpha \in \Phi : n \in \mathbb{Z}\}.$$

Remark. The corresponding vector subspace

$$V_{\alpha,\beta} = \operatorname{span}_{\mathbb{C}} \{ e^{\beta + n\alpha} \in \mathfrak{g} : n \in \mathbb{Z} \}$$

is an invariant subspace under $\mathfrak{sl}(2)_{\alpha}$, thus is the representation space for some representation R of $\mathfrak{sl}(2)_{\alpha}$, with weight set

$$S_R = \left\{ 2\left[n + \frac{(\alpha, \beta)}{(\alpha, \alpha)} \right] : \beta + n\alpha \in \Phi, n_- \leqslant n \leqslant n_+, n \in \mathbb{Z} \right\}, \quad \frac{2(\alpha, \beta)}{(\alpha, \alpha)} = -(n_+ + n_-).$$

Proposition 6. $(\alpha, \beta) \in \mathbb{R}$.

Lemma 7. $\mathfrak{h}^* = \operatorname{span}_{\mathbb{C}} \{ \alpha : \alpha \in \Phi \}.$

Corollary 8. dim $\mathfrak{g} \ge 2 \operatorname{rank} \mathfrak{g}$.

Lemma 9. $\Phi \subset \mathfrak{h}_{\mathbb{R}}^* = \operatorname{span}_{\mathbb{R}} \{ \alpha_{(i)} \in \Phi : i = 1, \cdots, r \}.$

Proposition 10. Roots $\alpha \in \Phi$ are elements of the real vector space $\mathfrak{h}_{\mathbb{R}}^* \simeq \mathbb{R}^r$ where $r = \operatorname{rank} \mathfrak{g}$, equipped with a Euclidean inner product (\cdot, \cdot) s.t. for all $\lambda, \mu \in \mathfrak{h}_{\mathbb{R}}^*$,

- 1) $(\lambda, \mu) \in \mathbb{R};$
- 2) $(\lambda, \lambda) \ge 0$ with equality iff $\lambda = 0$.

Definition (Norm and angle). The norm of a root α is

$$|\alpha| \coloneqq \sqrt{(\alpha, \alpha)} > 0.$$

The angle between any two roots, $\phi \equiv \measuredangle(\alpha, \beta)$, is given by

$$(\alpha, \beta) = |\alpha| |\beta| \cos \phi, \quad \phi \in [0, \pi].$$

Lemma 11. $4\cos^2 \phi \in \{0, 1, 2, 3, 4\}.$

Definition (Simple root). A simple root $\delta \in \Phi_S$ is a positive root that cannot be written as a sum of two positive roots.

Proposition 12.

- 1) If $\alpha, \beta \in \Phi_S$, then $\alpha \beta$ is not a root;
- 2) If $\alpha, \beta \in \Phi_S$, then the length of the α -string passing through β is

$$l_{\alpha,\beta} = 1 - \frac{2(\alpha,\beta)}{(\alpha,\alpha)} \in \mathbb{N} \setminus \{0\};$$

3) If $\alpha, \beta \in \Phi_S$ and $\alpha \neq \beta$, $(\alpha, \beta) \leq 0$;

4) Any positive root can be written as a linear combination of simple roots with positive integer coefficients, i.e.

$$\beta \in \Phi_+ \implies \beta = \sum_i c_i \alpha_{(i)}, \ \alpha_{(i)} \in \Phi_S, \ c_i \in \mathbb{N};$$

- 5) Simple roots are linearly independent;
- 6) There are exactly $r = \operatorname{rank} \mathfrak{g}$ simple roots, i.e. $|\Phi_S| = r$.

Definition. Let $\mathcal{B} = \{\alpha_{(i)} \in \Phi_S : i = 1, ..., r\}$ be an enumerated basis for $\mathfrak{h}_{\mathbb{R}}^*$. The *Cartan matrix* A is

$$A^{ij} \coloneqq 2\frac{(\alpha_{(i)}, \alpha_{(j)})}{(\alpha_{(j)}, \alpha_{(j)})} \in \mathbb{Z}, \quad i, j = 1, \dots, r.$$

Simple root algebra. For each $\alpha_{(i)} \in \Phi_S$ there is an associated $\mathfrak{sl}(2) = \operatorname{span}\{h^i \equiv h^{\alpha_{(i)}}, e^i_{\pm} \equiv e^{\pm \alpha_{(i)}}\}$ obeying

$$[h^i, e^i_{\pm}] = \pm 2 e^i_{\pm}, \quad [e^i_+, e^i_-] = h^i.$$

The 'Cartan-Weyl algebra' becomes

(Chevalley–)Serra relation. $\mathrm{ad}_{e^i_{\pm}}^{1-A^{ji}}e^j_{\pm}=0.$

Theorem 13 (Cartan). A finite-dimensional simple complex Lie algebra is uniquely determined by its Cartan matrix.

Remark. The Cartan matrix determines simple roots $\alpha_{(i)}$, i = 1, ..., r up to the choice of the first vector $\alpha_{(1)} \in \mathbb{R}^r$, and the remaining via root strings

Constraints.

- 1) $A^{ii} = 2, i = 1, \dots, r;$
- 2) $A^{ij} = 0 \Leftrightarrow A^{ji} = 0;$
- 3) $A^{ij} \in \mathbb{Z}_{\leq 0}$ for $i \neq j$ by property 3) of simple roots;
- 4) det A > 0 by non-degeneracy of the Euclidean inner product (\cdot, \cdot) ;
- 5) A is irreducible.

Remark. $\frac{|\alpha_{(i)}|}{|\alpha_{(j)}|} = \sqrt{\frac{A^{ij}}{A^{ji}}}, \quad \cos^2 \phi_{ij} = \frac{1}{4} A^{ij} A^{ji}.$

Lemma 14. A simple Lie algebra has simple roots of at most two different lengths.

Representation of simple Lie algebras. Consider a representation R of the simple Lie algebra \mathfrak{g} acting on representation space $R(H^i)R(E^{\alpha})v = (\lambda^i + \alpha^i)R(E^{\alpha})v$, i.e. each weight λ is shifted by roots α under the action of step operators.

 $\textit{Remark. } R(h^{\alpha})v_{\lambda} = \frac{2(\alpha,\lambda)}{(\alpha,\alpha)}v_{\lambda} \text{ so } \frac{2(\alpha,\lambda)}{(\alpha,\alpha)} \in S_{R_{\alpha}} \text{ for some representation } R_{\alpha} \text{ of } \mathfrak{sl}(2).$

Definition (Co-root and lattices). Simple co-roots $\alpha_{(i)}^{\vee} = \frac{2\alpha_{(i)}}{(\alpha_{(i)}, \alpha_{(i)})}$. The root lattice and co-root lattice are

$$L[\mathfrak{g}] \coloneqq \operatorname{span}_{\mathbb{Z}}\{\alpha_{(i)}: i = 1, \dots, r\}, \quad L^{\vee}[\mathfrak{g}] \coloneqq \operatorname{span}_{\mathbb{Z}}\{\alpha_{(i)}^{\vee}: i = 1, \dots, r\}.$$

The weight lattice is dual to the co-root lattice

$$L_W[\mathfrak{g}] \coloneqq L^{\vee *}[\mathfrak{g}] \equiv \{\lambda \in \mathfrak{h}_{\mathbb{R}}^* : (\lambda, \mu) \in \mathbb{Z} \,\forall \, \mu \in L^{\vee}[\mathfrak{g}] \}.$$

Remark. All weights are in the weight lattice $S_R \subset L_W[\mathfrak{g}]$.

Definition. Given a basis $\mathcal{B} = \{\alpha_{(i)}^{\vee} : i = 1, ..., r\}$ of the co-root lattice $L^{\vee}[\mathfrak{g}]$, the fundamental weights of \mathfrak{g} are the dual basis $\mathcal{B}^* = \{\omega_{(i)} : i = 1, ..., r\}$ for $L_W[\mathfrak{g}]$ satisfying $(\alpha_{(i)}^{\vee}, \omega_{(j)}) = \delta_{ij}$.

Remark. $\alpha_{(i)} = \sum_{j=1}^{r} A^{ij} \omega_{(j)}$.

Definition (Dynkin labels). For any weight $\lambda \in S_R \subseteq L_W[\mathfrak{g}]$, $\lambda = \sum_{i=1}^r \lambda^i \omega_{(i)}$ where $\{\lambda^i\}$ are the *Dynkin labels* of λ .

Definition (Highest weight). The *highest weight* Λ of a representation R has its eigenvector $v_{\Lambda} \in V$ annihilated by all step operators

$$R(E^{\alpha})v_{\Lambda} = 0 \qquad \forall \, \alpha \in \Phi_+.$$

Definition (Dynkin labels). Given any finite-dimensional representation R of \mathfrak{g} labelled by its highest weight $\Lambda = \sum_{i=1}^{r} \Lambda^{i} \omega_{(i)} \in S_{R}$, its Dynkin labels are $\{\Lambda^{i} \in \mathbb{Z}\}$.

Fact 5. For any finite-dimensional representation R of \mathfrak{g} ,

$$\lambda = \sum_{i=1}^{r} \lambda^{i} \omega_{(i)} \in S_{R} \implies \lambda - m_{(i)} \alpha_{(i)} \in S_{R}$$

where $0 \leq m_{(i)} \leq \lambda^i, m_{(i)} \in \mathbb{N}$.

Definition (Dominant integral weight). $\lambda = \sum_i \lambda^i \omega_{(i)}$ is a *dominant integral weight* if $\lambda^i \in \mathbb{N}$. Denote the set of dominant integral weights by \overline{L}_W .

Irreducible Representations of A₂

Fact 6. Each dominant integral weight in A_2

$$\Lambda = \Lambda^1 \omega_{(1)} + \Lambda^2 \omega_{(2)} \in \overline{L}_W, \qquad \Lambda^{1,2} \in \mathbb{N}$$

gives an irreducible representation (irrep.) $R_{(\Lambda^1,\Lambda^2)}$ of dimension

dim
$$R_{(\Lambda^1,\Lambda^2)} = \frac{1}{2}(\Lambda^1 + 1)(\Lambda^2 + 1)(\Lambda^1 + \Lambda^2 + 2).$$

For $\Lambda^1 \neq \Lambda^2$, $R_{(\Lambda^2,\Lambda^1)} = \overline{R}_{(\Lambda^1,\Lambda^2)}$ with their weights related by reflection: $\lambda \in S_{(\Lambda^1,\Lambda^2)} \Leftrightarrow -\lambda \in S_{(\Lambda^2,\Lambda^1)}$.

Claim 15. $\lambda \in S_{\Lambda}, \lambda' \in S_{\Lambda'} \Rightarrow \lambda + \lambda' \in L_W[\mathfrak{g}] \text{ and } \lambda + \lambda' \in S_{R_{\Lambda} \otimes R_{\Lambda'}}.$

Conclusion. Let R_{Λ} , labelled by the highest weight $\Lambda \in \overline{L}_W[\mathfrak{g}]$, represent irreducibly the finite-dimensional, simple, complex Lie algebra \mathfrak{g} :

Repn.	Notn.	Remarks	 Every such g has a real form of compact type with κ^{ab} = -κδ^{ab}, κ > 0; g_R = L(G) is classified by Cartan;
$R_{(0,0)}$	1	trivial	
$R_{(1,0)}$	3	fundamental	
$R_{(0,1)}$	$\overline{3}$	anti-fundamental	
$R_{(1,1)}$	8	8 adjoint	3) Every irrep R_{Λ} of \mathfrak{g} provides an irrep R_{Λ} of $\mathfrak{g}_{\mathbb{R}}$ as well as an irrep $D_{\Lambda} = \text{Exp}(R_{\Lambda})$ of G . Further, D_{Λ} is unitary so $R_{\Lambda}(X)^{\dagger}$ +

 $R_{\Lambda}(X) = 0$ for all $X \in \mathfrak{g}_{\mathbb{R}}$.

7 Gauge Theory

Definition. In relativistic electromagnetism, the 4-potential is $a_{\mu} \coloneqq (\Phi, \mathbf{A})$ with the *field strength tensor* $f_{\mu\nu} \coloneqq \partial_{\mu}a_{\nu} - \partial_{\nu}a_{\mu}$.

Remark. Under the gauge transformation $a_{\mu} \rightarrow a_{\mu} + \partial_{\mu}\chi$. Re-define $A_{\mu} = -ia_{\mu} \in i\mathbb{R} \simeq \mathfrak{L}(\mathrm{U}(1))$ and $F_{\mu\nu} = -if_{\mu\nu}$.

Definition (Global U(1)-gauge scalar field). A global U(1)-gauge complex scalar field $\phi : \mathbb{R}^{3,1} \to \mathbb{C}$ with Lagrangian density

$$\mathcal{L}_{\phi} = \partial_{\mu} \phi^* \partial^{\mu} \phi - W(\phi^* \phi)$$

is invariant under U(1) global symmetry $\phi \to g\phi$, where $g = e^{i\delta} \in U(1)$.

[To couple the scalar field to EM and obtain a quantum theory describing scalar 'electrons' interacting with photons, we gauge the U(1) symmetry.]

Definition (Local U(1)-gauge scalar field). Promoting the above to be $g : \mathbb{R}^{3,1} \to U(1)$ and $X : \mathbb{R}^{3,1} \to \mathfrak{L}(U(1))$, we obtain a *local* U(1)-gauge complex scalar field $\phi : \mathbb{R}^{3,1} \to \mathbb{C}$ with Lagrangian density

$$\mathcal{L} = -\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + (D_{\mu}\phi)^* D^{\mu}\phi - W(\phi^*\phi),$$

Table 1: A_2 irreps of lowest dimensions.

invariant under U(1) local symmetry

$$\delta_X \phi = \epsilon X \phi, \quad \delta_X A_\mu = -\epsilon \partial_\mu X,$$

i.e. $a_{\mu} \to a_{\mu} + \partial_{\mu} \chi$ with $\chi = -i\epsilon X$, where the U(1) gauge field $A_{\mu} : \mathbb{R}^{3,1} \to \mathfrak{L}(U(1)) \simeq i\mathbb{R}$ and the covariant derivative $D_{\mu} := \partial_{\mu} + A_{\mu}$.

Exercise. Show the kinetic term $(D_{\mu}\phi)^*D^{\mu}\phi$ is invariant under gauge transformations from $\delta_X(D_{\mu}\phi) = \epsilon X D_{\mu}\phi$.

Definition (Global gauge scalar field). Let G be a gauge Lie group with unitary representation D, i.e. $D_{\Lambda}(g)^{\dagger}D_{\Lambda}(g) = \mathbb{I} \forall g \in G$, and a representation space $\mathcal{V} \simeq \mathbb{C}^{N}$ equipped with the standard inner product $(u, v) = u^{\dagger} \cdot v, u, v \in \mathcal{V}$. A global gauge scalar field $\phi : \mathbb{R}^{3,1} \to \mathcal{V}$ has a Lagrangian

$$\mathcal{L}_{\phi} = (\partial_{\mu}\phi, \partial^{\mu}\phi) - W\left((\phi, \phi)\right)$$

invariant under the global symmetry transformation $\phi \to D(g)\phi \,\forall \, g \in G$.

Remark. Near the identity $g = \text{Exp}(\epsilon X)$ and $D(g) = \text{Exp}(\epsilon R(X))$ where $R : \mathfrak{L}(G) \to \text{Mat}_N(\mathbb{C})$ is the representation of the Lie algebra satisfying $R(X)^{\dagger} + R(X) = 0 \forall X \in \mathfrak{L}(G)$. Infinitesimally, $D(g) \simeq \mathbb{I} + \epsilon R(X)$ and

$$\phi \longrightarrow \phi + \delta_X \phi, \quad \delta_X \phi = \epsilon R(X) \phi \in \mathcal{V}$$

Definition (Local gauge scalar field). Promoting the above to $X : \mathbb{R}^{3,1} \to \mathfrak{L}(G)$, we obtain a *local* gauge scalar field ϕ with the gauge-invariant Lagrangian

$$\mathcal{L} = (\mathrm{D}_{\mu}\phi, \mathrm{D}^{\mu}\phi) - W\left((\phi, \phi)\right),$$

the gauge field $A_{\mu} : \mathbb{R}^{3,1} \to \mathfrak{L}(G)$ and transformations

$$\delta_X \phi = \epsilon R(X(x))\phi \in \mathcal{V}, \quad \delta_X A_\mu = -\epsilon \partial_\mu X + \epsilon [X, A_\mu] \in \mathfrak{L}(G).$$

where the covariant derivative $D_{\mu} \coloneqq \partial_{\mu} + R(A_{\mu})$.

Exercise. Show the kinetic term $(D_{\mu}\phi)^*D^{\mu}\phi$ is invariant under gauge transformations from $\delta_X(D_{\mu}\phi) = \epsilon R(X)D_{\mu}\phi$.

Definition (Field strength tensor). The field strength tensor $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}] \in \mathfrak{L}(G)$.

Remark. The first two terms are linear and the bracket is quadratic in A_{μ} , allowing us to rescale so that the coefficient of the bracket is 1. Hence this definition is general.

Claim 16. $\delta_X(F_{\mu\nu}) = \epsilon[X, F_{\mu\nu}] \in \mathfrak{L}(G).$

Definition (Yang–Mills Lagrangian). $\mathcal{L}_A = \frac{1}{g^2} \kappa(F_{\mu\nu}, F^{\mu\nu}).$

Remark. This is gauge-invariant $\delta_X \mathcal{L}_A = 0$ due to the invariance property of the Killing form.

Construction of gauge-invariant theories. By simplicity, the Lie algebra associated with the gauge symmetry has a real form of compact type, providing a sensible kinetic term for the gauge field. In other words, there is a basis $\mathcal{B} = \{T^a\}_{a=1}^{d \equiv \dim G}$ s.t. $\kappa^{ab} \equiv \kappa(T^a, T^b) = -\kappa \delta^{ab}, \kappa > 0$. Hence with $F_{\mu\nu} = (F_{\mu\nu})_a T^a \in \mathfrak{L}(G)$

$$\mathcal{L}_A = -\frac{\kappa}{g^2} \sum_{a=1}^d \left(F_{\mu\nu}\right)_a (F^{\mu\nu})^a.$$

A large family of consistent theories are provided by the Cartan Classification with data:

1) gauge group

G (compact, simple) $\rightarrow \mathfrak{g}_{\mathbb{R}} = \mathfrak{L}(G)$ (of compact type, simple)

with associated gauge field $A_{\mu}:\mathbb{R}^{3,1}\to\mathfrak{L}(G)$ satisfying its transformation rule;

2) matter content

$$\phi_{\Lambda}: \mathbb{R}^{3,1} \to \mathcal{V}_{\Lambda}, \quad \Lambda \in S = \bar{L}_W[\mathfrak{g}]$$

where R_{Λ} are irreps of $\mathfrak{g}_{\mathbb{R}}$ acting on representation space \mathcal{V}_{Λ} labelled by weights Λ .

Full Lagrangian.

With strength tensor $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}]$ and the covariant derivative $D_{\mu} = \partial_{\mu} + R_{\Lambda}(A_{\mu})$,

$$\mathcal{L} = \frac{1}{g^2} \kappa(F_{\mu\nu}, F^{\mu\nu}) + \sum_{\Lambda \in S} (D_{\mu}\phi_{\Lambda}, D^{\mu}\phi_{\Lambda}) - W\left(\{(\phi_{\Lambda}, \phi_{\Lambda}) : \Lambda \in S\}\right)$$

is invariant under the gauge transformation

$$\delta_X \phi_\Lambda = \epsilon R_\Lambda(X) \phi_\Lambda, \quad \delta_X A_\mu = -\epsilon \partial_\mu X + \epsilon [X, A_\mu]$$

specified by $X:\mathbb{R}^{3,1}\to\mathfrak{L}(G).$