Review of Symmetries, Fields and Particles

Mathematical Tripos Part III

Easter Term, 2017

1 Lie Groups

Definition (Symmetry). A symmetry is a transformation of dynamic variables that leaves the form of physical laws invariant.

Definition (Lie group). A Lie group is a group manifold with dimension that of the manifold.
Remark. Smoothness reduces understanding to near the identity.
Classifying Lie groups reduces to classifying Lie algebras. Degeneracies in the spectrum of a quantum system are determined by irreducible representations of the global symmetry.

Examples.

1) $\mathrm{O}(n)$ has two disconnected pieces and is length-preserving;
2) $\mathrm{SO}(n)$ preserves the sign of the volume element $\Omega=\varepsilon_{i_{1} \cdots i_{n}} v_{1}^{i_{1}} \cdots v_{n}^{i_{n}}$ where $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a frame in \mathbb{R}^{n}.

Examples.

1) $M(\theta)=\cos \theta \mathbb{I}_{2}-\sin \theta \mathbb{J}_{2} \in \mathrm{SO}(2), \mathcal{M}(\mathrm{SO}(2))=S^{1}$;
2) $M(\boldsymbol{\omega})=\cos \theta \delta_{i j}+(1-\cos \theta) n_{i} n_{j}-\sin \theta \varepsilon_{i j k} n_{k} \in \mathrm{SO}(3), \mathcal{M}(\mathrm{SO}(3))=B_{3} \cup\left(\partial \bar{B}_{3} / \mathbb{Z}_{2}\right)$ where $\theta \equiv|\boldsymbol{\omega}|$, $\mathbf{n} \equiv \hat{\omega}$. This is compact (closed and bounded), connected but not simply connected.

Examples. Non-compact signature-preserving group

$$
\mathrm{O}(p, q)=\left\{M \in \mathrm{GL}(n, \mathbb{R}): M^{T} \eta M=\eta\right\}
$$

where $\eta=\left(\begin{array}{cc}I_{p} & 0 \\ 0 & -I_{q}\end{array}\right)$, e.g. $M=\binom{\cosh \theta \sinh \theta}{\sinh \theta \cosh \theta} \in \mathrm{SO}(1,1)$.
Definition (Isomorphism). $G \simeq G^{\prime}$ if there exists a bijective homomorphism.

2 Lie Algebras

Definition (Lie algebra). A Lie algebra is a vector space over a field with an antisymmetric, bilinear map known as a Lie bracket that satisfies the facobi identity.

Remark. A vector space V with an associative product has a natural Lie algebra. By Jaboci, the structure constants satisfy $f^{a b}{ }_{c} f^{c d}{ }_{e}+f^{b d}{ }_{c} f^{c a}{ }_{e}+f^{d a}{ }_{c} f^{c b}{ }_{e}=0$.
Definition (Lie algebra isomorphism). $\mathfrak{g} \simeq \mathfrak{g}^{\prime}$ if the underlying isomorphism preserves the Lie bracket.
Remark. Classification of Lie algebras is up to isomorphisms.
Definition (Ideal). An ideal of \mathfrak{g} is a subalgebra with strong closure, i.e. $[X, Y] \in \mathfrak{h} \forall X \in \mathfrak{h}, Y \in \mathfrak{g}$.
Examples.

1) Trivial ideals $\mathfrak{h}=\{0\}, \mathfrak{g}$;
2) The derived algebra $\mathfrak{i}(\mathfrak{g}):=[\mathfrak{g}, \mathfrak{g}] \equiv \operatorname{span}_{\mathbb{F}}\{[X, Y]: X, Y \in \mathfrak{g}\}$;
3) The centre $\mathfrak{z}(\mathfrak{g}):=\{X \in \mathfrak{g}:[X, Y]=0 \forall Y \in \mathfrak{g}\}$.

Definition (Simplicity). A Lie algebra \mathfrak{g} is simple if it is non-abelian and possesses no non-trivial ideals.
Remark. For simple $\mathfrak{g}, \mathfrak{z}(\mathfrak{g})=\{0\}, \mathfrak{i}(\mathfrak{g})=\mathfrak{g}$. For abelian $\mathfrak{g}, \mathfrak{z}(\mathfrak{g})=\mathfrak{g}, \mathfrak{i}(\mathfrak{g})=\{0\}$.

3 Lie Algebras from Lie Groups

Definition (Tangent space). The tangent space $T_{p} \mathcal{M}$ to \mathcal{M} at p is a D-dimensional vector space spanned by $\left\{\partial_{j}\right\}_{j=1}^{D}$. A tangent vector $V=v^{i} \partial_{i} \in T_{p} \mathcal{M}$ acts on functions $f: \mathcal{M} \rightarrow \mathbb{R}$ as $V(f)=\left.v^{i} \partial_{i} f(x)\right|_{x=0}$.
Definition (Curve). A smooth curve $C: \mathbb{R} \rightarrow \mathcal{M}$ is continuous and once-differentiable.

The Lie algebra associated with a Lie group is $\mathfrak{L}(G)=\left(\mathcal{T}_{e}(G),[\cdot, \cdot]\right)$.
Examples.

- $\mathfrak{L}(\mathrm{SO}(n))=\mathfrak{L}(\mathrm{O}(n))=\{$ real skew-symmetric matrices $\} ;$
- $\mathfrak{L}(\mathrm{SU}(n))=\{$ traceless skew-Hermitian matrices $\}$;

■ $\mathfrak{L}(\mathrm{SU}(2))$ spanned by $T^{a}=-i \sigma_{a} / 2$ and $\mathfrak{L}(\mathrm{SO}(3))$ spanned by $\left(\tilde{T}^{a}\right)_{b c}=-\varepsilon_{a b c}$ both with $f^{a b}{ }_{c}=\varepsilon_{a b c}$.
Remark. Although $\mathrm{SO}(3) \nsucceq \mathrm{SU}(2), \mathfrak{L}(\mathrm{SO}(3))=\mathfrak{L}(\mathrm{SU}(2))$.
Definition (Translation maps). The left and right translations associated with $h \in G$ are $L_{h}: g \mapsto h g$ and $R_{h}: g \mapsto g h$. Remark. They are bijective and diffeomorphisms of G.
$L_{h}: g \mapsto h g(\theta)=g\left(\theta^{\prime}\right)$ is specified by $\theta^{\prime} \equiv \theta^{\prime}(\theta)$ with Jacobian $J_{j}^{i}=\frac{\partial \theta^{\prime i}}{\partial \theta^{j}}$. This induces a linear map $\forall g$

$$
L_{h}^{*}: \mathcal{T}_{g}(G) \longrightarrow \mathcal{T}_{h g}(G), \quad v=v^{i} \frac{\partial}{\partial \theta^{i}} \longmapsto v^{\prime}=v^{\prime i} \frac{\partial}{\partial \theta^{\prime i}}
$$

where $v^{\prime i}=J_{j}^{i}(\theta) v^{j}$.

Definition (Left-invariant vector field). The left-invariant vector field given $w \in \mathcal{T}_{e}(G)$ is $V: g \mapsto L_{g}^{*}(w)$.
Remark. This is smooth and non-vanishing.
Claim 1. $L_{h}^{*}(X)=h X \in \mathcal{T}_{h}(G) \forall h \in G, X \in \mathfrak{L}(G)$. In particular, $g^{-1}(t) \dot{g}(t)=L_{g^{-1}}^{*}(\dot{g}(t)) \in \mathfrak{L}(G)$.
Remark. Conversely, given $X \in \mathfrak{L}(G)$, we can construct a curve $C: \mathbb{R} \rightarrow G$ by solving the ODE $g^{-1}(t) \dot{g}(t)=X$ for all t subject to $g(0)=I_{n}$.

Definition (Exponential map). $\operatorname{Exp}(M):=\sum_{l=0}^{\infty} M^{l} / l!\in \operatorname{Mat}_{n}(\mathbb{F})$ provided it converges for $M \in \operatorname{Mat}_{n}(\mathbb{F})$.
Remark. The exponential map $\operatorname{Exp}: \mathfrak{L}(G) \rightarrow G$ is bijective in some neighbourhood of e. With the correct choice of range \mathfrak{I} of $t, S_{X, \mathfrak{I}}:=\{g(t)=\operatorname{Exp}(t X): t \in \mathfrak{I} \subseteq \mathbb{R}\}$ is an abelian Lie subgroup of G.

Baker-Campbell-Hausdorff (BCH) formula.

$$
\operatorname{Exp}(X) \operatorname{Exp}(Y)=\operatorname{Exp}\left\{X+Y+\frac{1}{2}[X, Y]+\frac{1}{12}([X,[X, Y]]-[Y,[X, Y]])+\cdots\right\}
$$

Remark. Provided convergence in the BCH formula, $\mathfrak{L}(G)$ completely determines G in some neighbourhood of e. But globally the exponential map is not bijective: not surjective when G is not connected; not injective when G has a $\mathrm{U}(1)$ subgroup.

Examples.

1) $\mathfrak{L}(\mathrm{O}(n))=\left\{X \in \operatorname{Mat}_{n}(\mathbb{F}): X+X^{T}=0\right\}$ so $\operatorname{tr} X=0$. But det $\operatorname{Exp} X=\exp \operatorname{tr} X=1, \operatorname{Exp}(\mathfrak{L}(\mathrm{O}(n)))=$ $\mathrm{SO}(n) \neq \mathrm{O}(n)$;
2) $\mathfrak{L}(\mathrm{U}(1))=\{X=i x: x \in \mathbb{R}\}$. Since $g=\operatorname{Exp} X=e^{i x} \in \mathrm{U}(1), i x \sim i x+2 i \pi$.

4 Representation of Lie Algebras

Definition (Representation). A representation d of a Lie algebra is a linear homomorphism to a set of matrices preserving the Lie bracket.

Remark. $\operatorname{dim} d:=\operatorname{dim} \mathcal{V} \neq \operatorname{dim} G$. Given representation D of a matrix Lie group G and $X \in \mathfrak{L}(G)$,

$$
d(X)=\left.\frac{d}{d t}\right|_{t=0} D(g(t))
$$

Examples.

1) The trivial representation d_{0} with $d_{0}(X)=0 \in \mathbb{F}$ of dimension 1 ;
2) The fundamental representation d_{f} with $d_{f}(X)=X$ of dimension D;
3) The adjoint representation $d_{\text {adj }}(X)=\operatorname{ad}$.

Definition (Adjoint map). Given $X \in \mathfrak{g}$, its adjoint map is $\operatorname{ad}_{X}: \mathfrak{g} \rightarrow \mathfrak{g}, Y \mapsto[X, Y]$.
Remark. $\left[d_{\mathrm{adj}}(X)\right]^{b}{ }_{c}=X_{a} f^{a b}{ }_{c}$ where $f^{a b}{ }_{c}$ the structure constants of \mathfrak{g}.

Definition (Equivalence of representations). $R_{1} \simeq R_{2}$ if there exists a non-singular matrix S s.t. $\forall X \in \mathfrak{g}, R_{2}(X)=$ $S R_{1}(X) S^{-1}$.

Definition (Invariant subspace). A representation R with representation space \mathcal{V} has an invariant subspace $\mathcal{U} \subseteq \mathcal{V}$ if $R \cdot \mathcal{U} \subseteq \mathcal{U}$.

Remark. $\mathcal{U}=\{0\}, \mathcal{V}$ are trivial invariant subspaces.
Definition (Irreducibility). An irreducible representation (irrep) of a Lie algebra has no non-trivial invariant subspaces.

Representations of $\mathfrak{L}(\mathbf{S U}(2))$

Roots. In basis $H=\sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), E_{ \pm}=\left(\sigma_{1} \pm i \sigma_{2}\right) / 2=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, the roots of $\mathfrak{L}(\operatorname{SU}(2))$ are the eigenvalues $\{0, \pm 2\}$ of eigenvectors $\left\{H, E_{ \pm}\right\}$of ad_{H}.

Weights. Given representation R that $R(H)$ is diagonalisable, its eigenvectors span \mathcal{V} and its eigenvalues $\{\lambda\}$ are known as the weights of representation R.

Step operators. $E_{ \pm}$obey $R(H) R\left(E_{ \pm}\right) v_{\lambda}=(\lambda \pm 2) R\left(E_{ \pm}\right) v_{\lambda}$.
Results. For a finite-dimensional, irreducible representation R_{Λ} of $\mathfrak{L}(\operatorname{SU}(2))$ labelled by the highest weight $\Lambda \in \mathbb{N}$,

1) the weight set is $S_{R}=\{-\Lambda,-\Lambda+2, \ldots, \Lambda-2, \Lambda\} \subset \mathbb{Z}$;
2) the weights are non-degenerate with $\operatorname{dim}\left(R_{\Lambda}\right)=\Lambda+1$.

Representations from $\mathfrak{L}(\mathbf{S U}(2))$

$\mathbf{S U}(2)$ representations. Obtained from $\operatorname{Exp}: R_{\Lambda}(X) \mapsto D_{\Lambda}(A)$.
$\mathbf{S O}(3)$ versus $\mathbf{S U}(2) . \mathrm{SO}(3)=\mathrm{SU}(2) / \mathbb{Z}_{2}$ requires $D_{\Lambda}\left(I_{2}\right)=D_{\Lambda}\left(-I_{2}\right)$, but

$$
-I_{2}=\operatorname{Exp}(i \pi H), \quad H=\operatorname{diag}(1,-1)
$$

so $D_{\Lambda}\left(-I_{2}\right)=\operatorname{Exp}\left(i \pi R_{\Lambda}(H)\right)$ has eigenvalues $e^{i \pi \lambda}=(-1)^{\lambda}=(-1)^{\Lambda}$:

1) $\Lambda \in 2 \mathbb{Z}$, then D_{Λ} represents both $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$;
2) $\Lambda \in 2 \mathbb{Z}+1$, then D_{Λ} represents $\mathrm{SU}(2)$ but not $\mathrm{SO}(3)$.

5 Representation Theory

Definition (Conjugate representation). The conjugate representation of a representation R of a real Lie algebra \mathfrak{g} is $\bar{R}(X)=R(X)^{*} \forall X \in \mathfrak{g}$.

Remark. Possibly $\bar{R} \simeq R$.

Direct sum. The direct sum $R_{1} \oplus R_{2}$ is a representation acting on $V_{1} \oplus V_{2}=\left\{v_{1} \oplus v_{2}\right\}$,

$$
\left(R_{1} \oplus R_{2}\right)(X)\left(v_{1} \oplus v_{2}\right)=R_{1}(X) v_{1} \oplus R_{2}(X) v_{2}
$$

with the matrix $\left(R_{1} \oplus R_{2}\right)(X)=\left(\begin{array}{cc}R_{1}(X) & 0 \\ 0 & R_{2}(X)\end{array}\right)$ and $\operatorname{dim}\left(R_{1} \oplus R_{2}\right)=\operatorname{dim} R_{1}+\operatorname{dim} R_{2}$.
Tensor product. The tensor product $R_{1} \otimes R_{2}$ is a representation acting on $V_{1} \otimes V_{2}=\left\{v_{1} \oplus v_{2}\right\}$,

$$
\left(R_{1} \otimes R_{2}\right)(X)=R_{1}(X) \otimes I_{(2)}+I_{(1)} \otimes R_{2}(X)
$$

with the matrix $\left(R_{1} \otimes R_{2}\right)(X)_{i \alpha, j \beta}=R_{1}(X)_{i j} I_{\alpha \beta}+I_{i j} R_{2}(X)_{\alpha \beta}$ and $\operatorname{dim}\left(R_{1} \otimes R_{2}\right)=\operatorname{dim} R_{1} \operatorname{dim} R_{2}$.
Remark. If R is reducible, there is a basis in which $R(X)=\left(\begin{array}{c}* \\ 0 \\ 0\end{array}\right) \forall X \in \mathfrak{g}$. If R is fully reducible, there exists a basis in which $R(X)=\bigoplus_{i} R_{i}(X) \forall X \in \mathfrak{g}$ for irreps R_{i}.

Fact 1. If R_{i} are finite-dimensional irreducible representations of a simple Lie algebra, then $\bigotimes_{i=1}^{m} R_{i}=\bigoplus_{j=1}^{\tilde{m}} \tilde{R}_{j}$ is fully reducible into irrep \tilde{R}_{j}.

Examples. Let $R_{\Lambda}, R_{\Lambda^{\prime}}$ be irreducible representations of $\mathfrak{L}(\mathrm{SU}(2))$ then

$$
R_{\Lambda} \otimes R_{\Lambda^{\prime}}=\bigoplus_{\Lambda^{\prime \prime} \in \mathbb{N}} l_{\Lambda, \Lambda^{\prime}}^{\Lambda^{\prime \prime}} R_{\Lambda^{\prime \prime}}
$$

where $l_{\Lambda, \Lambda^{\prime}}^{\Lambda^{\prime \prime}} \in \mathbb{N}$ are the Littlewood-Richardson coefficients. Note $S_{\Lambda, \Lambda^{\prime}}=\left\{\lambda+\lambda^{\prime}: \lambda \in S_{\Lambda}, \lambda^{\prime} \in S_{\Lambda^{\prime}}\right\}$ and $l_{\Lambda, \Lambda^{\prime}}^{\Lambda+\Lambda^{\prime}}=1$. Example: $R_{1} \otimes R_{1}=R_{0} \oplus R_{2}$ and $l_{1,1}^{\Lambda^{\prime \prime}}=\delta_{\Lambda^{\prime \prime}, 2}+\delta_{\Lambda^{\prime \prime}, 0}$.

Definition (Inner product). An inner product is a symmetric bilinear form $V \times V \rightarrow \mathbb{F}$. It is non-degenerate if $\forall v \in V \backslash\{0\}, \exists w \in V$ s.t. $(v, w) \neq 0$.

Definition (Killing form). The Killing form is

$$
\begin{aligned}
\kappa: \mathfrak{g} \times \mathfrak{g} & \longrightarrow \mathbb{F} \\
(X, Y) & \longmapsto \operatorname{tr}\left(\operatorname{ad}_{X} \circ \operatorname{ad}_{Y}\right)
\end{aligned}
$$

Remark. $\kappa^{a b}=f^{a d}{ }_{c} f^{b c}{ }_{d}$.
Invariance under adjoint action. $\kappa(X,[Y, Z])+\kappa(Y,[X, Z])=0$.
Fact 2. If \mathfrak{g} is simple, the Killing form κ gives rise to the unique inner product (up to constant rescaling) that is invariant under the transformation $\delta_{Z}: X \mapsto X+[Z, X]$.

Definition (Semi-simplicity). A Lie algebra is semi-simple if it has no non-zero abelian ideals.
Theorem 2. If \mathfrak{g} is finite-dimensional and semi-simple, it is the direct sum of finitely many simple Lie algebras.
Theorem 3 (Cartan). The Killing form κ is non-degenerate iff the Lie algebra \mathfrak{g} is semi-simple.
Remark. Complex Lie algebras may have more than one real form, e.g. both $\mathfrak{L}(\mathrm{SU}(2))$ and $\mathfrak{L}(\mathrm{SL}(2, \mathbb{R}))$ are complexified to $\mathfrak{L}_{\mathbb{C}}(\mathrm{SU}(2))$.

Examples. $\mathfrak{L}(\mathrm{SU}(2))=\{2 \times 2$ traceless skew-Hermitian matrices $\}$,
$\mathfrak{L}_{\mathbb{C}}(\operatorname{SU}(2))=\{2 \times 2$ traceless complex matrices $\} \simeq \mathfrak{L}(\operatorname{SL}(2, \mathbb{C}))$.
Definition (Compact type). A real Lie algebra is of compact type if there is a basis s.t. $\kappa^{a b}=-\kappa \delta^{a b}, \kappa>0$.
Theorem 4. Every finite-dimensional complex semi-simple Lie algebra has a real form of compact type.

6 Cartan Classification of Finite-Dimensional Simple Complex Lie Algebras

Definition (Adjointly diagonalisable). $X \in \mathfrak{g}$ is adjointly diagonalisable (a.d.) if $\operatorname{ad}_{X}: \mathfrak{g} \rightarrow \mathfrak{g}$ is diagonalisable.
Definition (Cartan subalgebra). A Cartan subalgebra \mathfrak{h} of \mathfrak{g} is a maximal abelian subalgebra containing only a.d. elements.

Fact 3. All possible Cartan subalgebras $\mathfrak{h} \subset \mathfrak{g}$ have the same dimension $r \equiv \operatorname{dim} \mathfrak{h}$ known as the $r a n k$ of \mathfrak{g}.
Examples. For $\mathfrak{g}=\mathfrak{L}_{\mathbb{C}}(\mathrm{SU}(n))$ consisting of traceless complex matrices, $\left(H^{i}\right)_{\alpha \beta}=\delta_{\alpha i} \delta_{\beta i}-\delta_{\alpha i+1} \delta_{\beta i+1}, 1 \leqslant i \leqslant$ $n-1$. Hence rank $\mathfrak{g}=n-1$.

Properties.

1) $H \in \mathfrak{h}$ implies H is a.d.;
2) $H, H^{\prime} \in \mathfrak{h} \Rightarrow\left[H, H^{\prime}\right]=0 \Rightarrow \operatorname{ad}_{H} \circ \operatorname{ad}_{H^{\prime}}=\operatorname{ad}_{H^{\prime}} \circ \operatorname{ad}_{H}$;
3) $X \in \mathfrak{g}$ and $[X, H]=0 \forall H \in \mathfrak{h}$ imply $X \in \mathfrak{h}$.

Remark. $\left[H^{i}, H^{j}\right]=0$ so ad $_{H^{i}}$ are simultaneously diagonalisable. The spectrum includes:

1) zero eigenvalues $\left\{H^{j}: j=1, \ldots, r\right\}$;
2) nonzero eigenvalues $\left\{E^{\alpha}: \alpha \in \Phi\right\}$ for which $\operatorname{ad}_{H^{i}}\left(E^{\alpha}\right)=\alpha^{i} E^{\alpha}$, where α are roots.

Fact 4. Roots $\alpha: \mathfrak{h} \rightarrow \mathbb{C}$ of \mathfrak{g} are non-degenerate elements of the dual vector space \mathfrak{h}^{*}.
Remark. $\alpha: H=e_{i} H^{i} \mapsto \alpha^{i} e_{i}$ since $\left[H, E^{\alpha}\right]=\alpha(H)=\alpha^{i} e_{i} E^{\alpha}$.
Definition (Cartan-Weyl basis). The Cartan-Weyl basis for \mathfrak{g} is

$$
\mathcal{B}=\left\{H^{i}: i=1, \ldots, r\right\} \cup\left\{E^{\alpha}: \alpha \in \Phi\right\}
$$

satisfying $\left[H^{i}, H^{j}\right]=0,\left[H^{i}, E^{\alpha}\right]=\alpha^{i} E^{\alpha}$.
Remark. $|\Phi|=\operatorname{dim} \mathfrak{g}-\operatorname{rank} \mathfrak{g}$.
Definition (Killing form). On the simple Lie algebra \mathfrak{g}

$$
\kappa(X, Y)=\frac{1}{N} \operatorname{tr}\left(\operatorname{ad}_{X} \circ \operatorname{ad}_{Y}\right)
$$

for some normalisation constant $N>0$.
Remark. By simplicity, κ is non-degenerate by Cartan's theorem.

Proposition 5.

1) $\kappa\left(H, E^{\alpha}\right)=0 \forall H \in \mathfrak{h}, \alpha \in \Phi$;
2) $\kappa\left(E^{\alpha}, E^{\beta}\right)=0 \forall \alpha, \beta \in \Phi: \alpha+\beta \neq 0$;
3) $\forall H \in \mathfrak{h}, \exists H^{\prime} \in \mathfrak{h}$ s.t. $\kappa\left(H, H^{\prime}\right) \neq 0$;
4) $\alpha \in \Phi \Rightarrow-\alpha \in \Phi$ and $\kappa\left(E^{\alpha}, E^{-\alpha}\right) \neq 0$.

Remark. (3) says κ is non-degenerate on \mathfrak{h}, inducing a non-degenerate inner product on \mathfrak{h}^{*}

$$
(\alpha, \beta)=\left(\kappa^{-1}\right)_{i j} \alpha^{i} \beta^{j},
$$

and an isomorphism $K: H \in \mathfrak{h} \mapsto \kappa(H, \cdot) \in \mathfrak{h}^{*}$.
Result. By invariance of the Killing form,

$$
\begin{aligned}
{\left[H^{i},\left[E^{\alpha}, E^{\beta}\right]\right] } & =\left(\alpha^{i}+\beta^{i}\right)\left[E^{\alpha}, E^{\beta}\right] \\
\kappa\left(\left[E^{\alpha}, E^{-\alpha}\right], H\right) & =\alpha(H) \kappa\left(E^{\alpha}, E^{-\alpha}\right) \neq 0
\end{aligned}
$$

so $\kappa\left(H^{\alpha}, H\right)=\alpha(H)$ for all $H \in \mathfrak{h}$ has the unique solution

$$
H^{\alpha}=\frac{\left[E^{\alpha}, E^{-\alpha}\right]}{\kappa\left(E^{\alpha}, E^{-\alpha}\right)}
$$

by non-degeneracy, i.e. $H^{\alpha}=\left(\kappa^{-1}\right)_{i j} \alpha^{j} H^{i}$.

Cartan-Weyl algebra.

$$
e^{\alpha}=\sqrt{\frac{2}{(\alpha, \alpha) \kappa\left(E^{\alpha}, E^{-\alpha}\right)}} E^{\alpha}, \quad h^{\alpha}=\frac{2}{(\alpha, \alpha)} H^{\alpha}
$$

satisfies

$$
\begin{align*}
& {\left[h^{\alpha}, h^{\beta}\right]=0, \quad\left[h^{\alpha}, e^{\beta}\right]=\frac{2(\alpha, \beta)}{(\alpha, \alpha)} e^{\beta}} \tag{1}\\
& {\left[e^{\alpha}, e^{\beta}\right]=\left\{\begin{array}{cc}
n_{\alpha, \beta} e^{\alpha+\beta}, & \alpha+\beta \in \Phi \\
h^{\alpha}, & \alpha+\beta=0 \\
0, & \text { else. }
\end{array}\right.} \tag{2}
\end{align*}
$$

$\mathfrak{s l}(2)_{\alpha}$ subalgebra. $\left[h^{\alpha}, e^{ \pm \alpha}\right]= \pm 2 e^{ \pm \alpha},\left[e^{\alpha}, e^{-\alpha}\right]=h^{\alpha}$.
Definition (Root string). For roots $\beta \not \alpha \alpha$ in Φ, the α-string passing through β is

$$
S_{\alpha, \beta}=\{\beta+n \alpha \in \Phi: n \in \mathbb{Z}\} .
$$

Remark. The corresponding vector subspace

$$
V_{\alpha, \beta}=\operatorname{span}_{\mathbb{C}}\left\{e^{\beta+n \alpha} \in \mathfrak{g}: n \in \mathbb{Z}\right\}
$$

is an invariant subspace under $\mathfrak{s l}(2)_{\alpha}$, thus is the representation space for some representation R of $\mathfrak{s l}(2)_{\alpha}$, with weight set

$$
S_{R}=\left\{2\left[n+\frac{(\alpha, \beta)}{(\alpha, \alpha)}\right]: \beta+n \alpha \in \Phi, n_{-} \leqslant n \leqslant n_{+}, n \in \mathbb{Z}\right\}, \quad \frac{2(\alpha, \beta)}{(\alpha, \alpha)}=-\left(n_{+}+n_{-}\right) .
$$

Proposition 6. $(\alpha, \beta) \in \mathbb{R}$.
Lemma 7. $\mathfrak{h}^{*}=\operatorname{span}_{\mathbb{C}}\{\alpha: \alpha \in \Phi\}$.
Corollary 8. $\operatorname{dim} \mathfrak{g} \geqslant 2 \operatorname{rank} \mathfrak{g}$.
Lemma 9. $\Phi \subset \mathfrak{h}_{\mathbb{R}}^{*}=\operatorname{span}_{\mathbb{R}}\left\{\alpha_{(i)} \in \Phi: i=1, \cdots, r\right\}$.
Proposition 10. Roots $\alpha \in \Phi$ are elements of the real vector space $\mathfrak{h}_{\mathbb{R}}^{*} \simeq \mathbb{R}^{r}$ where $r=\operatorname{rank} \mathfrak{g}$, equipped with a Euclidean inner product (\cdot, \cdot) s.t. for all $\lambda, \mu \in \mathfrak{h}_{\mathbb{R}}^{*}$,

1) $(\lambda, \mu) \in \mathbb{R}$;
2) $(\lambda, \lambda) \geqslant 0$ with equality iff $\lambda=0$.

Definition (Norm and angle). The norm of a root α is

$$
|\alpha|:=\sqrt{(\alpha, \alpha)}>0
$$

The angle between any two roots, $\phi \equiv \measuredangle(\alpha, \beta)$, is given by

$$
(\alpha, \beta)=|\alpha||\beta| \cos \phi, \quad \phi \in[0, \pi]
$$

Lemma 11. $4 \cos ^{2} \phi \in\{0,1,2,3,4\}$.
Definition (Simple root). A simple root $\delta \in \Phi_{S}$ is a positive root that cannot be written as a sum of two positive roots.

Proposition 12.

1) If $\alpha, \beta \in \Phi_{S}$, then $\alpha-\beta$ is not a root;
2) If $\alpha, \beta \in \Phi_{S}$, then the length of the α-string passing through β is

$$
l_{\alpha, \beta}=1-\frac{2(\alpha, \beta)}{(\alpha, \alpha)} \in \mathbb{N} \backslash\{0\}
$$

3) If $\alpha, \beta \in \Phi_{S}$ and $\alpha \neq \beta,(\alpha, \beta) \leqslant 0$;
4) Any positive root can be written as a linear combination of simple roots with positive integer coefficients, i.e.

$$
\beta \in \Phi_{+} \quad \Longrightarrow \quad \beta=\sum_{i} c_{i} \alpha_{(i)}, \alpha_{(i)} \in \Phi_{S}, c_{i} \in \mathbb{N}
$$

5) Simple roots are linearly independent;
6) There are exactly $r=\operatorname{rank} \mathfrak{g}$ simple roots, i.e. $\left|\Phi_{S}\right|=r$.

Definition. Let $\mathcal{B}=\left\{\alpha_{(i)} \in \Phi_{S}: i=1, \ldots, r\right\}$ be an enumerated basis for $\mathfrak{h}_{\mathbb{R}}^{*}$. The Cartan matrix A is

$$
A^{i j}:=2 \frac{\left(\alpha_{(i)}, \alpha_{(j)}\right)}{\left(\alpha_{(j)}, \alpha_{(j)}\right)} \in \mathbb{Z}, \quad i, j=1, \ldots, r
$$

Simple root algebra. For each $\alpha_{(i)} \in \Phi_{S}$ there is an associated $\mathfrak{s l}(2)=\operatorname{span}\left\{h^{i} \equiv h^{\alpha_{(i)}}, e_{ \pm}^{i} \equiv e^{ \pm \alpha_{(i)}}\right\}$ obeying

$$
\left[h^{i}, e_{ \pm}^{i}\right]= \pm 2 e_{ \pm}^{i}, \quad\left[e_{+}^{i}, e_{-}^{i}\right]=h^{i}
$$

The 'Cartan-Weyl algebra' becomes

$$
\begin{aligned}
{\left[h^{i}, h^{j}\right] } & =0 \\
{\left[h^{i}, e_{ \pm}^{j}\right] } & = \pm A^{j i} e_{ \pm}^{j} \\
{\left[e_{+}^{i}, e_{-}^{j}\right] } & =\delta^{i j} h^{i} .
\end{aligned}
$$

(Chevalley-)Serra relation. $\operatorname{ad}_{e_{ \pm}^{i}}^{1-A^{j i}} e_{ \pm}^{j}=0$.
Theorem 13 (Cartan). A finite-dimensional simple complex Lie algebra is uniquely determined by its Cartan matrix.
Remark. The Cartan matrix determines simple roots $\alpha_{(i)}, i=1, \ldots, r$ up to the choice of the first vector $\alpha_{(1)} \in \mathbb{R}^{r}$, and the remaining via root strings

Constraints.

1) $A^{i i}=2, i=1, \ldots, r$;
2) $A^{i j}=0 \Leftrightarrow A^{j i}=0$;
3) $A^{i j} \in \mathbb{Z}_{\leqslant 0}$ for $i \neq j$ by property 3) of simple roots;
4) $\operatorname{det} A>0$ by non-degeneracy of the Euclidean inner product (\cdot, \cdot);
5) A is irreducible.

Remark. $\frac{\left|\alpha_{(i)}\right|}{\left|\alpha_{(j)}\right|}=\sqrt{\frac{A^{i j}}{A^{j i}}}, \quad \cos ^{2} \phi_{i j}=\frac{1}{4} A^{i j} A^{j i}$.
Lemma 14. A simple Lie algebra has simple roots of at most two different lengths.

Cartan classification.

Remark.

1) $n=1, A_{1}=B_{1}=C_{1}=D_{1} \simeq \mathfrak{L}_{\mathbb{C}}(\mathrm{SU}(2))$, e.g. $\mathfrak{L}_{\mathbb{C}}(\mathrm{SU}(2)) \simeq \mathfrak{L}_{\mathbb{C}}(\mathrm{SO}(3))$;
2) $n=2, B_{2}=C_{2}$ and $D_{2} \simeq A_{1} \oplus A_{1}$;
3) $n=3, D_{3}=A_{3}$.

Representation of simple Lie algebras. Consider a representation R of the simple Lie algebra \mathfrak{g} acting on representation space $R\left(H^{i}\right) R\left(E^{\alpha}\right) v=\left(\lambda^{i}+\alpha^{i}\right) R\left(E^{\alpha}\right) v$, i.e. each weight λ is shifted by roots α under the action of step operators.
Remark. $R\left(h^{\alpha}\right) v_{\lambda}=\frac{2(\alpha, \lambda)}{(\alpha, \alpha)} v_{\lambda}$ so $\frac{2(\alpha, \lambda)}{(\alpha, \alpha)} \in S_{R_{\alpha}}$ for some representation R_{α} of $\mathfrak{s l}(2)$.
Definition (Co-root and lattices). Simple co-roots $\alpha_{(i)}^{\vee}=\frac{2 \alpha_{(i)}}{\left(\alpha_{(i)}, \alpha_{(i)}\right)}$. The root lattice and co-root lattice are

$$
L[\mathfrak{g}]:=\operatorname{span}_{\mathbb{Z}}\left\{\alpha_{(i)}: i=1, \ldots, r\right\}, \quad L^{\vee}[\mathfrak{g}]:=\operatorname{span}_{\mathbb{Z}}\left\{\alpha_{(i)}^{\vee}: i=1, \ldots, r\right\} .
$$

The weight lattice is dual to the co-root lattice

$$
L_{W}[\mathfrak{g}]:=L^{\vee *}[\mathfrak{g}] \equiv\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*}:(\lambda, \mu) \in \mathbb{Z} \forall \mu \in L^{\vee}[\mathfrak{g}]\right\} .
$$

Remark. All weights are in the weight lattice $S_{R} \subset L_{W}[\mathfrak{g}]$.
Definition. Given a basis $\mathcal{B}=\left\{\alpha_{(i)}^{\vee}: i=1, \ldots, r\right\}$ of the co-root lattice $L^{\vee}[\mathfrak{g}]$, the fundamental weights of \mathfrak{g} are the dual basis $\mathcal{B}^{*}=\left\{\omega_{(i)}: i=1, \ldots, r\right\}$ for $L_{W}[\mathfrak{g}]$ satisfying $\left(\alpha_{(i)}^{\vee}, \omega_{(j)}\right)=\delta_{i j}$.
Remark. $\alpha_{(i)}=\sum_{j=1}^{r} A^{i j} \omega_{(j)}$.
Definition (Dynkin labels). For any weight $\lambda \in S_{R} \subseteq L_{W}[\mathfrak{g}], \lambda=\sum_{i=1}^{r} \lambda^{i} \omega_{(i)}$ where $\left\{\lambda^{i}\right\}$ are the Dynkin labels of λ.

Definition (Highest weight). The highest weight Λ of a representation R has its eigenvector $v_{\Lambda} \in V$ annihilated by all step operators

$$
R\left(E^{\alpha}\right) v_{\Lambda}=0 \quad \forall \alpha \in \Phi_{+}
$$

Definition (Dynkin labels). Given any finite-dimensional representation R of \mathfrak{g} labelled by its highest weight $\Lambda=\sum_{i=1}^{r} \Lambda^{i} \omega_{(i)} \in S_{R}$, its Dynkin labels are $\left\{\Lambda^{i} \in \mathbb{Z}\right\}$.
Fact 5. For any finite-dimensional representation R of \mathfrak{g},

$$
\lambda=\sum_{i=1}^{r} \lambda^{i} \omega_{(i)} \in S_{R} \quad \Longrightarrow \quad \lambda-m_{(i)} \alpha_{(i)} \in S_{R}
$$

where $0 \leqslant m_{(i)} \leqslant \lambda^{i}, m_{(i)} \in \mathbb{N}$.
Definition (Dominant integral weight). $\lambda=\sum_{i} \lambda^{i} \omega_{(i)}$ is a dominant integral weight if $\lambda^{i} \in \mathbb{N}$. Denote the set of dominant integral weights by \bar{L}_{W}.

Irreducible Representations of A_{2}

Fact 6. Each dominant integral weight in A_{2}

$$
\Lambda=\Lambda^{1} \omega_{(1)}+\Lambda^{2} \omega_{(2)} \in \bar{L}_{W}, \quad \Lambda^{1,2} \in \mathbb{N}
$$

gives an irreducible representation (irrep.) $R_{\left(\Lambda^{1}, \Lambda^{2}\right)}$ of dimension

$$
\operatorname{dim} R_{\left(\Lambda^{1}, \Lambda^{2}\right)}=\frac{1}{2}\left(\Lambda^{1}+1\right)\left(\Lambda^{2}+1\right)\left(\Lambda^{1}+\Lambda^{2}+2\right)
$$

For $\Lambda^{1} \neq \Lambda^{2}, R_{\left(\Lambda^{2}, \Lambda^{1}\right)}=\bar{R}_{\left(\Lambda^{1}, \Lambda^{2}\right)}$ with their weights related by reflection: $\lambda \in S_{\left(\Lambda^{1}, \Lambda^{2}\right)} \Leftrightarrow-\lambda \in S_{\left(\Lambda^{2}, \Lambda^{1}\right)}$.
Claim 15. $\lambda \in S_{\Lambda}, \lambda^{\prime} \in S_{\Lambda^{\prime}} \Rightarrow \lambda+\lambda^{\prime} \in L_{W}[\mathfrak{g}]$ and $\lambda+\lambda^{\prime} \in S_{R_{\Lambda} \otimes R_{\Lambda^{\prime}}}$.

Table 1: A_{2} irreps of lowest dimensions.

Repn.	Notn.	Remarks
$R_{(0,0)}$	$\mathbf{1}$	trivial
$R_{(1,0)}$	$\mathbf{3}$	fundamental
$R_{(0,1)}$	$\overline{\mathbf{3}}$	anti-fundamental
$R_{(1,1)}$	$\mathbf{8}$	adjoint

Conclusion. Let R_{Λ}, labelled by the highest weight $\Lambda \in \bar{L}_{W}[\mathfrak{g}]$, represent irreducibly the finite-dimensional, simple, complex Lie algebra $\mathfrak{g}:$

1) Every such \mathfrak{g} has a real form of compact type with $\kappa^{a b}=$ $-\kappa \delta^{a b}, \kappa>0$;
2) $\mathfrak{g}_{\mathbb{R}}=\mathfrak{L}(G)$ is classified by Cartan;
3) Every irrep R_{Λ} of \mathfrak{g} provides an irrep R_{Λ} of $\mathfrak{g}_{\mathbb{R}}$ as well as an irrep $D_{\Lambda}=\operatorname{Exp}\left(R_{\Lambda}\right)$ of G. Further, \underline{D}_{Λ} is unitary so $R_{\Lambda}(X)^{\dagger}+$ $R_{\Lambda}(X)=0$ for all $X \in \mathfrak{g}_{\mathbb{R}}$.

7 Gauge Theory

Definition. In relativistic electromagnetism, the 4-potential is $a_{\mu}:=(\Phi, \mathbf{A})$ with the field strength tensor $f_{\mu \nu}:=$ $\partial_{\mu} a_{\nu}-\partial_{\nu} a_{\mu}$.

Remark. Under the gauge transformation $a_{\mu} \rightarrow a_{\mu}+\partial_{\mu} \chi$. Re-define $A_{\mu}=-i a_{\mu} \in i \mathbb{R} \simeq \mathfrak{L}(\mathrm{U}(1))$ and $F_{\mu \nu}=-i f_{\mu \nu}$. Definition (Global $U(1)$-gauge scalar field). A global $U(1)$-gauge complex scalar field $\phi: \mathbb{R}^{3,1} \rightarrow \mathbb{C}$ with Lagrangian density

$$
\mathcal{L}_{\phi}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-W\left(\phi^{*} \phi\right)
$$

is invariant under $\mathrm{U}(1)$ global symmetry $\phi \rightarrow g \phi$, where $g=e^{i \delta} \in \mathrm{U}(1)$.
[To couple the scalar field to EM and obtain a quantum theory describing scalar 'electrons' interacting with photons, we gauge the $U(1)$ symmetry.]
Definition (Local $\mathrm{U}(1)$-gauge scalar field). Promoting the above to be $g: \mathbb{R}^{3,1} \rightarrow \mathrm{U}(1)$ and $X: \mathbb{R}^{3,1} \rightarrow \mathfrak{L}(\mathrm{U}(1))$, we obtain a local $\mathrm{U}(1)$-gauge complex scalar field $\phi: \mathbb{R}^{3,1} \rightarrow \mathbb{C}$ with Lagrangian density

$$
\mathcal{L}=-\frac{1}{4 g^{2}} F_{\mu \nu} F^{\mu \nu}+\left(\mathrm{D}_{\mu} \phi\right)^{*} \mathrm{D}^{\mu} \phi-W\left(\phi^{*} \phi\right)
$$

invariant under $\mathrm{U}(1)$ local symmetry

$$
\delta_{X} \phi=\epsilon X \phi, \quad \delta_{X} A_{\mu}=-\epsilon \partial_{\mu} X,
$$

i.e. $a_{\mu} \rightarrow a_{\mu}+\partial_{\mu} \chi$ with $\chi=-i \epsilon X$, where the $\mathrm{U}(1)$ gauge field $A_{\mu}: \mathbb{R}^{3,1} \rightarrow \mathfrak{L}(\mathrm{U}(1)) \simeq i \mathbb{R}$ and the covariant derivative $\mathrm{D}_{\mu}:=\partial_{\mu}+A_{\mu}$.

Exercise. Show the kinetic term $\left(\mathrm{D}_{\mu} \phi\right)^{*} \mathrm{D}^{\mu} \phi$ is invariant under gauge transformations from $\delta_{X}\left(\mathrm{D}_{\mu} \phi\right)=\epsilon X \mathrm{D}_{\mu} \phi$.
Definition (Global gauge scalar field). Let G be a gauge Lie group with unitary representation D, i.e. $D_{\Lambda}(g)^{\dagger} D_{\Lambda}(g)=$ $\mathbb{I} \forall g \in G$, and a representation space $\mathcal{V} \simeq \mathbb{C}^{N}$ equipped with the standard inner product $(u, v)=u^{\dagger} \cdot v, u, v \in \mathcal{V}$. A global gauge scalar field $\phi: \mathbb{R}^{3,1} \rightarrow \mathcal{V}$ has a Lagrangian

$$
\mathcal{L}_{\phi}=\left(\partial_{\mu} \phi, \partial^{\mu} \phi\right)-W((\phi, \phi))
$$

invariant under the global symmetry transformation $\phi \rightarrow D(g) \phi \forall g \in G$.
Remark. Near the identity $g=\operatorname{Exp}(\epsilon X)$ and $D(g)=\operatorname{Exp}(\epsilon R(X))$ where $R: \mathfrak{L}(G) \rightarrow$ Mat $_{N}(\mathbb{C})$ is the representation of the Lie algebra satisfying $R(X)^{\dagger}+R(X)=0 \forall X \in \mathfrak{L}(G)$. Infinitesimally, $D(g) \simeq \mathbb{I}+\epsilon R(X)$ and

$$
\phi \longrightarrow \phi+\delta_{X} \phi, \quad \delta_{X} \phi=\epsilon R(X) \phi \in \mathcal{V} .
$$

Definition (Local gauge scalar field). Promoting the above to $X: \mathbb{R}^{3,1} \rightarrow \mathfrak{L}(G)$, we obtain a local gauge scalar field ϕ with the gauge-invariant Lagrangian

$$
\mathcal{L}=\left(\mathrm{D}_{\mu} \phi, \mathrm{D}^{\mu} \phi\right)-W((\phi, \phi)),
$$

the gauge field $A_{\mu}: \mathbb{R}^{3,1} \rightarrow \mathfrak{L}(G)$ and transformations

$$
\delta_{X} \phi=\epsilon R(X(x)) \phi \in \mathcal{V}, \quad \delta_{X} A_{\mu}=-\epsilon \partial_{\mu} X+\epsilon\left[X, A_{\mu}\right] \in \mathfrak{L}(G) .
$$

where the covariant derivative $\mathrm{D}_{\mu}:=\partial_{\mu}+R\left(A_{\mu}\right)$.
Exercise. Show the kinetic term $\left(\mathrm{D}_{\mu} \phi\right)^{*} \mathrm{D}^{\mu} \phi$ is invariant under gauge transformations from $\delta_{X}\left(\mathrm{D}_{\mu} \phi\right)=\epsilon R(X) \mathrm{D}_{\mu} \phi$.
Definition (Field strength tensor). The field strength tensor $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right] \in \mathfrak{L}(G)$.
Remark. The first two terms are linear and the bracket is quadratic in A_{μ}, allowing us to rescale so that the coefficient of the bracket is 1 . Hence this definition is general.

Claim 16. $\delta_{X}\left(F_{\mu \nu}\right)=\epsilon\left[X, F_{\mu \nu}\right] \in \mathfrak{L}(G)$.
Definition (Yang-Mills Lagrangian). $\mathcal{L}_{A}=\frac{1}{g^{2}} \kappa\left(F_{\mu \nu}, F^{\mu \nu}\right)$.
Remark. This is gauge-invariant $\delta_{X} \mathcal{L}_{A}=0$ due to the invariance property of the Killing form.
Construction of gauge-invariant theories. By simplicity, the Lie algebra associated with the gauge symmetry has a real form of compact type, providing a sensible kinetic term for the gauge field. In other words, there is a basis $\mathcal{B}=\left\{T^{a}\right\}_{a=1}^{d \equiv \operatorname{dim} G}$ s.t. $\kappa^{a b} \equiv \kappa\left(T^{a}, T^{b}\right)=-\kappa \delta^{a b}, \kappa>0$. Hence with $F_{\mu \nu}=\left(F_{\mu \nu}\right)_{a} T^{a} \in \mathfrak{L}(G)$

$$
\mathcal{L}_{A}=-\frac{\kappa}{g^{2}} \sum_{a=1}^{d}\left(F_{\mu \nu}\right)_{a}\left(F^{\mu \nu}\right)^{a} .
$$

A large family of consistent theories are provided by the Cartan Classification with data:

1) gauge group

$$
G \text { (compact, simple) } \rightarrow \mathfrak{g}_{\mathbb{R}}=\mathfrak{L}(G) \text { (of compact type, simple) }
$$

with associated gauge field $A_{\mu}: \mathbb{R}^{3,1} \rightarrow \mathfrak{L}(G)$ satisfying its transformation rule;
2) matter content

$$
\phi_{\Lambda}: \mathbb{R}^{3,1} \rightarrow \mathcal{V}_{\Lambda}, \quad \Lambda \in S=\bar{L}_{W}[\mathfrak{g}]
$$

where R_{Λ} are irreps of $\mathfrak{g}_{\mathbb{R}}$ acting on representation space \mathcal{V}_{Λ} labelled by weights Λ.

Full Lagrangian.

With strength tensor $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right]$ and the covariant derivative $\mathrm{D}_{\mu}=\partial_{\mu}+R_{\Lambda}\left(A_{\mu}\right)$,

$$
\mathcal{L}=\frac{1}{g^{2}} \kappa\left(F_{\mu \nu}, F^{\mu \nu}\right)+\sum_{\Lambda \in S}\left(\mathrm{D}_{\mu} \phi_{\Lambda}, \mathrm{D}^{\mu} \phi_{\Lambda}\right)-W\left(\left\{\left(\phi_{\Lambda}, \phi_{\Lambda}\right): \Lambda \in S\right\}\right)
$$

is invariant under the gauge transformation

$$
\delta_{X} \phi_{\Lambda}=\epsilon R_{\Lambda}(X) \phi_{\Lambda}, \quad \delta_{X} A_{\mu}=-\epsilon \partial_{\mu} X+\epsilon\left[X, A_{\mu}\right]
$$

specified by $X: \mathbb{R}^{3,1} \rightarrow \mathfrak{L}(G)$.

