Review of Symmetries, Fields and Particles

Mathematical Tripos Part III

Easter Term, 2017

1 Lie Groups

Definition (Symmetry). A symmetry is a transformation of dynamic variables that leaves the form of physical laws
invariant.

Definition (Lie group). A Lie group is a group manifold with dimension that of the manifold.

Remark. Smoothness reduces understanding to near the identity.

Classifying Lie groups reduces to classifying Lie algebras. Degeneracies in the spectrum of a quantum
system are determined by irreducible representations of the global symmetry.

Examples.

1) O(n) has two disconnected pieces and is length-preserving;

2) SO(n) preserves the sign of the volume element Q = &;,..;, v!' - - - vin where {vy,...,v,} is a frame in
R™.
Examples.

1) M(6) = cos 0y — sin 0], € SO(2), M(SO(2)) = S;
2) M(w) = cos08;; + (1 — cos@)n;n; — sin O, jng € SO(3), M(SO(3)) = B3 U (0B3/Zs) where 6 = |w

n = @. This is compact (closed and bounded), connected but not simply connected.

5

Examples. Non-compact signature-preserving group
O(p,q) = {M € GL(n,R) : M"nM = n}
where n = (4 ) e M = (b sihd) € s0(1,1).

Definition (Isomorphism). G ~ G’ if there exists a bijective homomorphism.
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2 Lie Algebras

Definition (Lie algebra). A Lie algebra is a vector space over a field with an antisymmetric, bilinear map known as a
Lie bracket that satisfies the Jacobi identity.

Remark. A vector space V with an associative product has a natural Lie algebra. By Jaboci, the structure constants
: b d bd d b _
satisfy f° f< + fo° f4 + f% [, =0.

Definition (Lie algebra isomorphism). g ~ g’ if the underlying isomorphism preserves the Lie bracket.
Remark. Classification of Lie algebras is up to isomorphisms.

Definition (Ideal). An ideal of g is a subalgebra with strong closure, i.e. [X,Y] € hVX € h, Y € g.
Examples.
1) Trivial ideals h = {0}, g;
2) The derived algebrai(g) := [g, g] = spang{[X,Y]: X, Y € g};
3) The centre3(g) ={X €g:[X,Y]=0VY € g}.

Definition (Simplicity). A Lie algebra g is simple if it is non-abelian and possesses no non-trivial ideals.

Remark. For simple g, 3(g) = {0},i(g) = g. For abelian g, 3(g) = g,i(g) = {0}.

3 Lie Algebras from Lie Groups

Definition (Tangent space). The tangent space T,,M to M at p is a D-dimensional vector space spanned by {0; }le.
A tangent vector V = v'9; € T, M acts on functions f : M — Ras V(f) = v'0; f ()]0

Definition (Curve). A smooth curve C' : R — M is continuous and once-differentiable.

The Lie algebra associated with a Lie group is £(G) = (7.(G), [, *]).
Examples.
m £(SO(n)) = £(0(n)) = {real skew-symmetric matrices};
m £(SU(n)) = {traceless skew-Hermitian matrices};
m £(SU(2)) spanned by T% = —ic, /2 and £(SO(3)) spanned by (7). = —&ape both with f% = £,.
Remark. Although SO(3) # SU(2), £(SO(3)) = £(SU(2)).
Definition (Translation maps). The left and right translations associated with h € G are Ly, : g — hgand Ry, : g — gh.

Remark. They are bijective and diffeomorphisms of G.
Ly : g — hg(0) = g(&') is specified by 8’ = ¢'(0) with Jacobian J]Z: = ‘gig/; This induces a linear map V g
0

o5 Y = g

Ly Ty(G) — Thg(G), v=1'

where v = J(0)v7.
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Definition (Left-invariant vector field). The left-invariant vector field given w € Te(G)is V : g — Ly (w).
Remark. This is smooth and non-vanishing.
Claim 1. L;(X) = hX € To(G) Vh € G, X € £(G). In particular, g~ (t)g(t) = L;,l(g(t)) € £(G).

Remark. Conversely, given X € £(G), we can construct a curve C' : R — G by solving the ODE g~ !(¢)g(t) = X for
all t subject to g(0) = I,.

Definition (Exponential map). Exp(M) = >_7°, M'/I! € Mat,(F) provided it converges for M € Mat,(F).
Remark. The exponential map Exp : £(G) — G is bijective in some neighbourhood of e. With the correct choice of
range J of t, Sx 5 = {g(t) = Exp(tX) : t € 3 C R} is an abelian Lie subgroup of G.

Baker-Campbell-Hausdorff (BCH) formula.

Exp(X)Exp(Y) = Exp{X FY 4 SV 4 (X XY - X YD 4 }

Remark. Provided convergence in the BCH formula, £(G) completely determines G in some neighbourhood of e. But
globally the exponential map is not bijective: not surjective when G is not connected; not injective when G has a U(1)
subgroup.

Examples.

1) £(0(n)) = {X € Mat,(F) : X + X7 =0} sotr X = 0. But det ExpX = exptr X = 1, Exp(£(0(n))) =
SO(n) # O(n);

2) £(U(1)) = {X =iz : x € R}. Since g = ExpX = € € U(1), iz ~ iz + 2ir.

4 Representation of Lie Algebras

Definition (Representation). A representation d of a Lie algebra is a linear homomorphism to a set of matrices
preserving the Lie bracket.

Remark. dimd := dimV # dim G. Given representation D of a matrix Lie group G and X € £(G),

d

t=0

D(g(t)).

Examples.

1) The trivial representation dy with do(X) = 0 € F of dimension 1;
2) The fundamental representation dy with d¢(X) = X of dimension D;

3) The adjoint representation d,gi(X) = adx.

Definition (Adjoint map). Given X € g, its adjoint mapisadx : g — g,Y — [X,Y].

b

Remark. [dagi(X)] .= Xa £ where . the structure constants of g.
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Definition (Equivalence of representations). R ~ Ry if there exists a non-singular matrix S s.t. V.X € g, Ro(X) =
SRy (X ) S

Definition (Invariant subspace). A representation R with representation space V has an invariant subspacetd C V if
R-UCU.

Remark. U = {0}, V are trivial invariant subspaces.

Definition (Irreducibility). An irreducible representation (irrep) of a Lie algebra has no non-trivial invariant subspaces.

Representations of £(SU(2))

Roots. Inbasis H =03 = (§ °) ), B+ = (01 £i02)/2 = (), (1 9), the roots of £(SU(2)) are the eigenvalues
{0, £2} of eigenvectors { H, £+ } of adpy.

Weights. Given representation R that R(H) is diagonalisable, its eigenvectors span V and its eigenvalues {\}
are known as the weights of representation R.

Step operators. Ey obey R(H)R(EL)vy = (A £ 2)R(E+)vy.

Results. For a finite-dimensional, irreducible representation R, of £(SU(2)) labelled by the highest weight
AeN,

1) the weight setis Sp = {—A,—A+2,...,A -2 A} C Z;
2) the weights are non-degenerate with dim(Ry) = A + 1.

Representations from £(SU(2))

SU(2) representations. Obtained from Exp : Rj(X) — Dy (A).

SO(3) versus SU(2). SO(3) = SU(2)/Zs requires D (I3) = Dp(—12), but
—I, =Exp(irH), H = diag(1,—1)

so Dp(—1I2) = Exp(in Rp(H)) has eigenvalues e™ = (—1)* = (—1)A:

1) A € 2Z, then D represents both SU(2) and SO(3);
2) A € 2Z + 1, then Dy represents SU(2) but not SO(3).

5 Representation Theory

Definition (Conjugate representation). The conjugate representation of a representation R of a real Lie algebra g is

R(X)=R(X)*VX € g.

Remark. Possibly R ~ R.
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Direct sum. The direct sum R; @ Ry is a representation acting on V) @ Vo = {v; @ va},
(Rl ©® RZ)(X)(Ul D ’Ug) =R (X)’Ul D RQ(X)’UQ

with the matrix (R; @ Rs)(X) = (31 o o ) and dim(R; ® Rp) = dim R; + dim Ry.

Tensor product. The tensor product R; ® Ry is a representation acting on V; ® Vo = {v; @ va},
(B1 @ Ro)(X) = Ri(X) ® L(g) + I(1) @ Ra(X)

with the matrix (R1 (= R2>(X)ia,jﬁ = RI(X)Z']'I&B + IinQ(X)aB and dim(R1 &® Rg) = dim R; dim Rs.

Remark. If R is reducible, there is a basis in which R(X) = () VX € g.If R is fully reducible, there exists a basis
in which R(X) = @, Ri(X)V X € g for irreps R;.

Fact 1. If R; are finite-dimensional irreducible representations of a simple Lie algebra, then Q);" | R; = EBTZl R;is
fully reducible into irrep Rj.

Examples. Let Ry, Rps be irreducible representations of £(SU(2)) then

1"
Ry ® Ry = @ I3 A R
AVEN

where lﬁ/;\, € N are the Littlewood—Richardson coefficients. Note Sy o = {A\+ X : A € Sy, XN € Sy} and
lﬁj\/}’ = 1. Example: R1 ® Ry = Ry @ R» and l{\:{ = Sana + arp.

Definition (Inner product). An inner product is a symmetric bilinear form V' x V' — F. It is non-degenerate if
Vo e V\{0}, Jw € Vst (v,w) # 0.

Definition (Killing form). The Killing form is

k:gxg—TF
(X, Y) — tr(adX o ady).

Remark. k™ = fod, fbcd.

Invariance under adjoint action. x(X, [Y, Z]) + (Y, [X, Z]) = 0.

Fact 2. If g is simple, the Killing form x gives rise to the unique inner product (up to constant rescaling) that is
invariant under the transformation 7 : X — X + [Z, X].

Definition (Semi-simplicity). A Lie algebra is semi-simple if it has no non-zero abelian ideals.

Theorem 2. Ifg is finite-dimensional and semi-simple, it is the direct sum of finitely many simple Lie algebras.

Theorem 3 (Cartan). The Killing form k is non-degenerate iff the Lie algebra g is semi-simple.

Remark. Complex Lie algebras may have more than one real form, e.g. both £(SU(2)) and £(SL(2, R)) are complexified
to £c(SU(2)).
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Examples. £(SU(2)) = {2 x 2 traceless skew-Hermitian matrices},
£c(SU(2)) = {2 x 2 traceless complex matrices} ~ £(SL(2,C)).

Definition (Compact type). A real Lie algebra is of compact type if there is a basis s.t. K% = —k6% k> 0.

Theorem 4. Every finite-dimensional complex semi-simple Lie algebra has a real form of compact type.

6 Cartan Classification of Finite-Dimensional Simple Complex Lie Algebras

Definition (Adjointly diagonalisable). X € g is adjointly diagonalisable (a.d.) if adx : g — g is diagonalisable.

Definition (Cartan subalgebra). A Cartan subalgebra b of g is a maximal abelian subalgebra containing only a.d.
elements.

Fact 3. All possible Cartan subalgebras ) C g have the same dimension » = dim h known as the rank of g.

Examples. For g = £¢(SU(n)) consisting of traceless complex matrices, (H")op = 60i0gi — 0ai+10pi+1, 1 < i <
n — 1. Hence rankg =n — 1.

Properties.

1) H € b implies H is a.d.;

2) HHH' e h= [H,H'] =0 = ady oady = ady o adp;

3) X €gand [X,H| =0V H € himply X € b.

Remark. [H', H7] = 0 so ad: are simultaneously diagonalisable. The spectrum includes:

1) zero eigenvalues {H7 : j =1,...,7};

2) nonzero eigenvalues { £ : o € ®} for which ad: (E%) = o' E®, where « are roots.
Fact 4. Roots o : h — C of g are non-degenerate elements of the dual vector space bh*.
Remark. o : H = e;H' — a'e; since [H, E*] = a(H) = a'e; E®.

Definition (Cartan-Weyl basis). The Cartan—Weyl basis for g is
B={H":i=1,...,r}U{E*:ac ®}

satisfying [H?, H7] = 0, [H!, EY] = o' E.

Remark. |®| = dimg — rank g.

Definition (Killing form). On the simple Lie algebra g
1
R(X,Y) = Ntr(adx o ady)

for some normalisation constant N > 0.

Remark. By simplicity, « is non-degenerate by Cartan’s theorem.



2017 © Mike S. Wang 7

Proposition 5.
1) k(H,E*) =0V H € h,a € P;
2) K(E*,E?) =0Va,B€d:a+ [ #0;
3) VH e h,3H € hst. k(H,H') # 0;
49) aed=—acPandk(EY E~Y) #£0.
Remark. (3) says k is non-degenerate on fj, inducing a non-degenerate inner product on h*
(CY,B) = (K’_l>ijai6j7
and an isomorphism K : H € h — k(H, -) € h*.
Result. By invariance of the Killing form,

[Hi7 [E017E5H = (ai + Bi)[Ea’EB]
K([E*E™,H) = a(H)k(E*,E™%) #0

so k(H*, H) = a(H) for all H € h has the unique solution

by non-degeneracy, ie. H* = (k~!);;a/ H".

Cartan-Weyl algebra.

2 2
¢ \/(a,a)m(Ea,E_O‘) ’ (a, @)

satisfies
2
(W hP1 =0, [h*, €] = (2 5) 5 (1)
(o, )
nape®?,  a+pBed
el = 4 B, a+pB=0 @)
0, else.

s[(2), subalgebra. [h%, et = £2¢T% [e, 7] = h®.

Definition (Root string). For roots 5 « « in @, the a-string passing through [3 is
Sapg={B+nacd®:neclZ}
Remark. The corresponding vector subspace
Vo = spanp{e’ " € g:n € Z}

is an invariant subspace under s((2),, thus is the representation space for some representation R of s((2),, with
weight set

Sk = {2 [n—i— (a,ﬁ)] B+naedn_ gngm_,neZ}, =—(ny +n_).

(a; @)

~
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Proposition 6. (o, 3) € R.

Lemma 7. h* = spanc{a: a € ®}.

Corollary 8. dimg > 2rank g.

Lemma9. ® C b = spang{a € ®:i=1,---,r}.

Proposition 10. Roots o € ® are elements of the real vector space by, ~ R" wherer = rank g, equipped with a Euclidean
inner product (-, + ) s.t. forall \, i € b,

1) (A p) €R;

2) (A, A\) = 0 with equality iff A = 0.
Definition (Norm and angle). The norm of a root « is

la] == +/(a, ) > 0.
The angle between any two roots, ¢ = £(a, 3), is given by
(, B) = |e|Blcos ¢, ¢ € [0,7].

Lemma 11. 4cos? ¢ € {0,1,2,3,4}.
Definition (Simple root). A simple root § € ®g is a positive root that cannot be written as a sum of two positive roots.
Proposition 12.

1) Ifa, B € ®g, then o — B is not a root;

2) Ifa,, B € ®g, then the length of the a-string passing through 3 is

2(e, B)
(o, )

lap =1~ e N\{0};

3) Ifo, B € ®s and o # B, (o, B) < 0;

4) Any positive root can be written as a linear combination of simple roots with positive integer coefficients, i.e.

ﬁ S (I>+ — ﬁ = Zcia(i), Q) € &g, ¢; €N;

5) Simple roots are linearly independent;

6) There are exactly r = rank g simple roots, i.e. |Pg| = 7.

Definition. Let B = {a(;) € ®g:i=1,...,7} be an enumerated basis for hy. The Cartan matrix A is

(a@), o))

AV =2
o), )

€Z, i,j=1,...,m



2017 © Mike S. Wang 9

Simple root algebra. For each a(;) € ®g there is an associated 5/(2) = span{h’ = h*0 ¢l = et} obeying
[h', '] = £2¢'y, [el,e"] = h"
The ‘Cartan-Weyl algebra’ becomes

[hia hj] =0
(Wi, el] = £ ATel,

el el ] =69n

(Chevalley-)Serra relation. adii_ Ajiei =0.
+
Theorem 13 (Cartan). A finite-dimensional simple complex Lie algebra is uniquely determined by its Cartan matrix.

Remark. The Cartan matrix determines simple roots ;) = 1,...,7 up to the choice of the first vector a(;) € R",
and the remaining via root strings

Constraints.

1) A% =2 i=1,...,r;
2) AV =0 < AT =(;

)
)

3) AY € Zg for i # j by property 3) of simple roots;

4) det A > 0 by non-degeneracy of the Euclidean inner product ( -, - );
)

5) A is irreducible.
R k. = _ 2 = — A AT,
emar |a(j)| Pk cos” ¢ 1

Lemma 14. A simple Lie algebra has simple roots of at most two different lengths.

Cartan classification.

4, O—O—O0O—----- —0O—0O eg L£c(SUMN+1))
1 2 3 n—1 n

B. O—(O—C0O—----- —(O==0 eg £c(SO(2n+1))
1 2 3 n—1 n

)
3

-0

o O

« O

3

|

Do

3

| 3
—_
o
o
']
Q
%)
o
S
S
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EGO—O—E—O—O E7O—O—i—O—O—O
EsO—O—i—O—O—O—O Fy O—0==0—7"~0 G =0

1) n = 1, A1 == Bl == Cl == D1 >~ 2@(8U(2)), e.g. Qc(SU(Q)) ~ £(C(SO(3));
2y n=2,By=Coand Dy ~ A1 ® Ay;
3) n =3, D3 = As.

Remark.

Representation of simple Lie algebras. Consider a representation R of the simple Lie algebra g acting on repre-
sentation space R(H")R(E*)v = (\' + o) R(E®)v, i.e. each weight ) is shifted by roots o under the action of step
operators.

2(a, A 2(a, A
Remark. R(h*)vy = ((aa’a; v) SO ((aa’a)) € Sp,, for some representation R, of s[(2).

Definition (Co-root and lattices). Simple co-roots o

v o 2aq)

@ (a@, a@)
Llg] == spany{ogy :i=1,...,r}, LY[g] = spanZ{a(vi) ci=1,...,1}

. The root lattice and co-root lattice are

The weight lattice is dual to the co-root lattice

Lwlg] =L [g] ={\ € bj : (\,pn) € ZV pu € LY[g]}.
Remark. All weights are in the weight lattice S C Ly [g].
Definition. Given a basis B = {a(vi) :4=1,...,r} of the co-root lattice L"[g], the fundamental weights of g are the
dual basis B* = {w(;) 1 i = 1,...,r} for Lyy[g] satisfying (a(vi),w(j)) = 0jj.
Remark. agy =377, Ay
Definition (Dynkin labels). For any weight A € Sg C Lyy[g], A = >_7_; A'w(;) where {\} are the Dynkin labels of
A

Definition (Highest weight). The highest weight A of a representation R has its eigenvector vy € V annihilated by
all step operators
R(E%)vp =0 Vae .

Definition (Dynkin labels). Given any finite-dimensional representation R of g labelled by its highest weight
A=, Aiw(i) € Sg, its Dynkin labels are {A" € Z}.

Fact 5. For any finite-dimensional representation R of g,
s
A= Z)‘Zw(z) €eSp = A— m) Q) € Sk
i=1

where 0 < m(;) < )\i,m(i) e N.

Definition (Dominant integral weight). A = > )\iw(i) is a dominant integral weight if \' € N. Denote the set of
dominant integral weights by Lyy .

10
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Irreducible Representations of A,

Fact 6. Each dominant integral weight in A,
A= Al(,cJ(l) + AQW(Q) € Ly, A2 eN
gives an irreducible representation (irrep.) R (51 52) of dimension

dim Ry 2 = %(Al F1)(A2 4 1)(AL 4 A2 4 2).

For A # A2, R(p2 a1y = R(p1,72) with their weights related by reflection: A € S(y1 42) < —A € S(p2 p1).

Claim 15. A € Sy, N € Sy = A+ XN € L[g] and \ + X € Sgr,wR,,-

Conclusion. Let Ry, labelled by the highest weight A € Lyy[g], rep-

resent irreducibly the finite-dimensional, simple, complex Lie algebra
Table 1: Aj irreps of lowest dimensions.

g:
Repn. ‘ Notn. ‘ Remarks . ,
R0 1 trivial 1) Everyb such g has a real form of compact type with k*° =
R1,0) 3 | fundamental —k0", K > 0;
R,y 3 anti-fundamental 2) gr = £(G) is classified by Cartan;
R(11 8 adjoint

3) Every irrep R of g provides an irrep Rj of gr as well as an
irrep Dy = Exp(R\) of G. Further, Dy is unitary so RA(X)Jr +
RA(X) =0forall X € gg.

7 Gauge Theory

Definition. In relativistic electromagnetism, the 4-potential is a,, = (®, A) with the field strength tensor f,, =
Outy, — Opay,.

Remark. Under the gauge transformation a,, — a, + 0, x. Re-define A, = —ia, € iR ~ £(U(1)) and F,, = —if,..

Definition (Global U(1)-gauge scalar field). A global U(1)-gauge complex scalar field ¢ : R3! — C with Lagrangian
density
Ly = 0u,0"0"¢ —W(¢"9)

is invariant under U(1) global symmetry ¢ — g¢, where g = € € U(1).

[To couple the scalar field to EM and obtain a quantum theory describing scalar ‘electrons’ interacting with photons,
we gauge the U(1) symmetry.]

Definition (Local U(1)-gauge scalar field). Promoting the above to be g : R*! — U(1) and X : R3! — £(U(1)), we
obtain a local U(1)-gauge complex scalar field ¢ : R®! — C with Lagrangian density

1

J
492

—F’[LVF/“/ + (Du¢)*DH¢ - W(¢*¢)7

11
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invariant under U(1) local symmetry
Ixp=eXop, OxA,=—€0,X,

ie. a, — a, + 9,x with x = —ieX, where the U(1) gauge field 4, : R>! — £(U(1)) ~ 4R and the covariant
derivative D, := 0, + A,.

Exercise. Show the kinetic term (D,,¢)*D*¢ is invariant under gauge transformations from dx (D, ¢) = eXD,¢.

Definition (Global gauge scalar field). Let G be a gauge Lie group with unitary representation D, i.e. Da(g)TDa(g) =
IV g € G, and a representation space V ~ C" equipped with the standard inner product (u,v) = uf - v,u,v € V. A
global gauge scalar field ¢ : R®»! — V has a Lagrangian

Ly = (0u9,0"d) — W ((¢,9))
invariant under the global symmetry transformation ¢ — D(g)¢V g € G.

Remark. Near the identity g = Exp(eX ) and D(g) = Exp(eR(X)) where R : £(G) — Maty (C) is the representation
of the Lie algebra satisfying R(X)" + R(X) = 0V X € £(G). Infinitesimally, D(g) ~ I + eR(X) and

¢ — ¢+0x9, dxp=€eR(X)peV.

Definition (Local gauge scalar field). Promoting the above to X : R*! — £(G), we obtain a local gauge scalar field
¢ with the gauge-invariant Lagrangian

£ = (D6, D) — W ((6,6)).
the gauge field 4,, : R*! — £(G) and transformations
dxp=€eR(X(x))peV, OxA,=—€e0,X +€[X, A, € £(G).
where the covariant derivative D,, := 0, + R(A,).

Exercise. Show the kinetic term (D,,¢)*D* ¢ is invariant under gauge transformations from d x (D,¢) = e R(X)D .

Definition (Field strength tensor). The field strength tensor F,, = 0,,A, — 0, A, + [A,, A] € £(G).

Remark. The first two terms are linear and the bracket is quadratic in A,,, allowing us to rescale so that the coeflicient
of the bracket is 1. Hence this definition is general.

Claim 16. 0x(F,,) = €[X, F,,,] € £(G).

1
Definition (Yang-Mills Lagrangian). L4 = —k(F,, F*).
g

Remark. This is gauge-invariant dx £ 4 = 0 due to the invariance property of the Killing form.

Construction of gauge-invariant theories. By simplicity, the Lie algebra associated with the gauge symmetry has
a real form of compact type, providing a sensible kinetic term for the gauge field. In other words, there is a basis
B = {T2}d={mC gt ko = k(T T%) = —k6°, k > 0. Hence with F,, = (F,,), T € £(G)

d

K v\a

La= 55D (Bu)o(F)"
a=1

A large family of consistent theories are provided by the Cartan Classification with data:

12
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1) gauge group
G (compact, simple) — gr = £(G) (of compact type, simple)

with associated gauge field 4, : R¥! — £(G) satisfying its transformation rule;

2) matter content

(Z)A : Rg’l — VA, Ae S = Ew[g]

where Rp are irreps of gr acting on representation space V5 labelled by weights A.

Full Lagrangian.
With strength tensor F,,, = 9,4, — 9, A, + [A,, A,] and the covariant derivative D,, = 0, + Rx(A,),

L= .;QK(FMV,FV’V) + Z(D;L(ﬁA;D“¢A) -Ww ({(¢A;¢A) = S})
Aes

is invariant under the gauge transformation

dxdn = eRA(X)Pn, OxAy=—€0, X +€[X, A

specified by X : Rt — £(G).

13
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