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Random Matrix Theory meets
Portfolio Theory?

Random Matrix Theory (RMT) studies the emergent be-
haviour in the asymptotic limit of many classes of matrices
with random variable (r.v.) entries, when their dimensions
tend to in�nity. Introduced by Wishart in 1928, the theory
gained popularity when Wigner applied it to nuclear physics.

Today, in modern portfolio theory, the covariance-correlation
matrix is of fundamental importance to risk management
and asset allocation; they belong to a large class of matrices
in RMT called the Wishart ensemble.

In this study, our data set contains the standardised logarith-
mic returns for P = 452 stocks in the Standard & Poor’s (S&P)
500 market over T = 1258 trading days.

A ‘simple’ spectrum prediction

If the standardised data matrix X : T × P has independent
identically distributed (i.i.d.) r.v. entries with mean 0 and
variance 1, then the underlying correlation matrix C would
simply be the identity matrix IP .

In such cases, a universal result below in RMT gives the
limiting eigenvalue density function (e.d.f.) of the empirical
correlation matrix E ≡ T−1XTX .

TheMarčenko-Pastur (M-P) law

If X : T × P is a random matrix described as above, the
limiting e.d.f. of matrix E is then given by

f (x) =
1

2π

√
(λ+ − x)(x− λ−)

rx
in the limit P, T →∞ and P/T → r ∈ (0, 1), where λ± ≡
(1±

√
r)2.

The M-P law provides a
‘null hypothesis’ distribution
against which the observed
e.d.f. of E can be compared.
The eigenvalues not covered
by it are signals that suggest
the data are not truly random.

This is unsurprising for stock
market data, so we seek to im-
prove the ‘noise band’ given
by the M-P law.
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Fig. 1: Observed e.d.f. of E for the S&P 500

stock market. Large eigenvalues are shown

in the inset.

Mode and clustering analyses

A feature of modes (eigenvalue-eigenvector pairs of the correlation matrix) is the
localisation of their components, conveniently measured by the inverse participation
ratio (IPR).
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Fig. 2: The market mode (L) compoenents are uniform, as all stocks respond in a similar way to the overall market trend,

whereas in the lowest mode (R) with high IPR, two stocks interact strongly.

Hierarchical clustering analysis can reveal the internal structure of the market. Here
we have used the average linkage method with the dissimilarity distance measure.
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Fig. 3: The dendrogram generated by the average linkage clustering method and the minimum spanning tree (coloured by

sectors) give complementary visualisations of the stock market internal structure.

A multi-layer correlation model & its
predictions

Our analyses above help us construct a multi-layer model for the underlying cor-
relation matrix C , whose o�-diagonal entries are �lled in by average interactions
between stocks and (sub-)clusters.

Marčenko and Pastur have shown that for an underlying correlation matrix C with
e.d.f. ν(λ), the limiting e.d.f. f (λ) of the empirical correlation matrix satis�es the
integral equation

− 1

G(z)
= z − r

∫ ∞
−∞

dλ
λν(λ)

1 + λG(z)
(1)

where G(z) is the Stieltjes transform of f (λ), related by the transform pair

G(z) =

∫ ∞
−∞

dλ
f (λ)

λ− z
, f (λ) = lim

ε→0
ImG(λ + iε). (2)

In our model, this results in a polynomial equation of degree equal to the number of
distinct eigenvalues ofC . Instead of solving it at high computational costs, simulating
the empirical correlation matrix with random Gaussian data subject to C su�ces.

E�ect of layer division & an excellent match

Consider a two-sector toy model market whose correlation matrix is of the form

M =

(
M1 B
BT M2

)
where M1,2 : m1,2 ×m1,2 have unit diagonals and constant o�-diagonals α1,2, and B : m1 ×m2

have constant entries β.

By studing its characteristic polynomial with linear algebra identities such as the Sherman-
Morrison formula, we �nd the eigenvalues 1−α1,2 of respective multiplicitiesm1,2−1 are always
present whatever β is, but the other two eigenvalues λ1,2 from the roots of p(λ) = 0 are perturbed.

This means for our more complex correlation model with fundamental structures just like this,
layer division results in perturbations that push the eigenvalues λ1,2 apart, giving a very large
and a very small eigenvalue.
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Fig. 4: Left: a 148-layer model with the market mode for the underlying correlation matrix of the S&P 500 market analysed.

Right: new predicted empirical spectral distribution of the 148-layer model.

Our stock market empirical correlation matrix has many near-zero and a number of very large
eigenvalues, so by increasing the number of layers in our model, we obtain an analytic prediction
of the limiting e.d.f. of E that is an excellent match with the observations (see top right �gure).

Summary & further developments

Through our analyses, we have constructed a multi-layer structured correlation model of the
S&P 500 market that match the observations very well. Further developments could include:
• edge asymptotics. Our correlation matrix is �nite-dimensional, but the analytic prediction is

derived in the asymptotic limit. Its resulting artefacts can be studied with the Tracy-Widom
law.

• time evolution. The underlying data have been, probably incorrectly, assumed to have a sta-
tionary distribution in time.

• . . .
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