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1 What is Random Matrix Theory?

Random Matrix Theory (RMT) is the study of matrices with random
variable (r.v.) entries , e.g.

Xu X2
Xo1 X
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1 What is Random Matrix Theory?

Random Matrix Theory (RMT) is the study of matrices with random
variable (r.v.) entries , e.g.

Xu X2
Xo1 X

In particular, it concerns the emergent behaviours of random matrices in
the asymptotic limit.

Introduced by Wishart (1928), RMT gained prominence when Wigner
(1950s) applied the theory to spacing of energy levels in nuclear physics.
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2 Data overview: S&P 500

Price indices — logarithmic returns — de-meaned and normalised data.

P stocks
126.8 305 --- -09 1.7 --. 1.0 0.2
e |1263 307 -of 115 03 .|, |02 10
raw data standardised data X correlation matrix E

The log return is

Pi Pi — Pi—-1 .
Ri=lo ~ , i>1
’ . Pi—1( Pi—1 )
where p; is the i-th trading day price index. The empirical correlation
matrix is 1
E=_—_-X'X.
T
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3 Random Matrix Theory: the Mar&enko-Pastur law

Covariance-correlation matrices are of fundamental importance to
modern portfolio theory.

They belong a class of random matrices called the Wishart ensemble.

An important universality law for this ensemble in RMT:
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3 Random Matrix Theory: the Mar&enko-Pastur law

Covariance-correlation matrices are of fundamental importance to
modern portfolio theory.

They belong a class of random matrices called the Wishart ensemble.

An important universality law for this ensemble in RMT:

The Maréenko-Pastur law

If X : T x P has independently identically distributed (i.i.d.) r.v. entries
with mean 0 and variance 1, then the limiting eigenvalue density function
(e.d.f.) of matrix E = T-1X'X is

1 VO NG )
27 rA

F(\) =

as P, T —ocoand P/T — r € (0,1), where Ay = (1£/r)%
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3 The Mar¢éenko-Pastur law: a crude prediction

underlying correlation matrix C predicted e.d.f. of E

Marcenko-Pastur distribution

f@) = 2L\/u z)(z-A.)

= (1% VEP
Ip = o

All noise!!
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4 Mode analysis
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The market mode (L: IPR 3.98 x 107°)
and
the lowest mode (R: IPR 0.149).

Localisation

The inverse participation ratio is defined by IPR(v) = ZIPZIW;\“ where v
is the vector v.demeaned and normalised.
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4 Clustering analysis

Market mode removal: E' = E — A\jvyvi (A1, v largest eigenvalue pair);
Dissimilarity distance: djj =1 — corr(/, j);

: ) 1
Average linkage: Dy = I >icljes dij-
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Heatmap Dendrogram (L)
Minimum spanning tree (R)
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5 A multi-layered correlation model: preview visualisation

1
09 " histogram of observed eigenvalues
- Maréenko-Pastur distribution
08 £, simulated analytic prediction
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Heatmap (L) and analytic prediction (R)
for the empirical e.d.f of a multi-layered model.
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5 A multi-layered correlation model: analytic prediction

Model: v()\) = P71 Z,’;l (A = \;), the e.d.f. of underlying correlation
matrix C.
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5 A multi-layered correlation model: analytic prediction

Model: v(\) = P71 Z,’;l 0(A — Aj), the e.d.f. of underlying correlation
matrix C. Prediction: 7()\), the limiting e.d.f. of empirical correlation
matrix E.

The Stieltjes transform pair

c;(z):/oo d % F(3) = lim Im{G(A + )}

—00
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5 A multi-layered correlation model: analytic prediction

Model: v(\) = P71 Z,’;l 0(A — Aj), the e.d.f. of underlying correlation
matrix C. Prediction: 7()\), the limiting e.d.f. of empirical correlation
matrix E.

The Stieltjes transform pair

} F(V) o .
G(z)—/ AL ) = lim Im{ GO + )

|
T

The Mar&enko-Pastur equation

L [T )
e ¢ /_oodAHAG(z)
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5 A multi-layered correlation model: analytic prediction

Model: v()\) = P71 Zlil (A = \;), the e.d.f. of underlying correlation
matrix C. Prediction: 7()\), the limiting e.d.f. of empirical correlation
matrix E.

The Stieltjes transform pair

_ f(A) o -
G(z)—/ AL ) = lim Im{ GO + )

The Mar&enko-Pastur equation

L [T )
e ¢ /_oodAHAG(z)

|
T

A polynomial equation

[1+ 26 ]+ XG(2)] = - S NG ]+ X6(2)]

i=1 i=1 J#i

~U .
—

R

R

Mike S. Wang Seeking Gold in Sand with Random Matrix Theory



6 The layer division process: fundamental structures

Layer division:
M = Mpn(1,a) a single cluster

U
M (]. Oél) B
[ my )
M= Bt Mo (1, ) two smaller clusters
where m = my + mo.
Fundamental structures:
X y e y
_ly t
Mn(va): ) 825(1771) (1a1a31)
. . . ——— N ——
: y m my
y y X
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6 The layer division process: useful results

Useful techniques and results:
+ elementary operations;
o the identity
(5 T) < I o) - (5— TV-iu T)
u v)\-vtu 1)~ 0 4
where V' is invertible;

« the Sherman-Morrison formula:

A luvT A1

Ty-1_ A-1_
(A+uv' )t =A T vTA ln

where A is invertible and 14+ v A~u # 0.
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6 The layer division process: eigenvalue splitting

Findings:

« M has an eigenvalue A\; = 1 — a of multiplicity m — 1 and an
eigenvalue A\ = 1+ (m — 1)a of multiplicity 1.

« M’ has eigenvalues 1 — o o of multiplicity m; » — 1, and the
remaining eigenvalues )] , are roots of a quadratic polynomial with

TN =1+ A

The interaction correlation § perturbs these two eigenvalues, causing
them to separate and repel.
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6 The layer division process: an excellent match
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Comparison of the predicted empirical spectral density functions of a
10-layer correlation model (L) and a 148-layer one (R) with the market
mode.
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7 Summary & further developments

Summary.
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7 Summary & further developments

Summary.

More considerations:
« edge asymptotics with the Tracy-Widom law;
« time evolution;

« fine-tuning;
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